Menu Close

0-t-a-e-t-erf-kt-dt-a-gt-0-k-gt-0-




Question Number 222881 by MrGaster last updated on 10/Jul/25
   ∫_0 ^∞ t^a e^(−t) erf(kt)dt,a>0,k>0
$$ \\ $$$$\:\int_{\mathrm{0}} ^{\infty} {t}^{{a}} {e}^{−{t}} \mathrm{erf}\left({kt}\right){dt},{a}>\mathrm{0},{k}>\mathrm{0} \\ $$
Answered by gabthemathguy25 last updated on 10/Jul/25
((Γ(a+1))/( (√π)))∙_2 F_1 ((1/2),a+1;(3/2)−k^2 )
$$\frac{\Gamma\left({a}+\mathrm{1}\right)}{\:\sqrt{\pi}}\centerdot_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},{a}+\mathrm{1};\frac{\mathrm{3}}{\mathrm{2}}−{k}^{\mathrm{2}} \right) \\ $$
Commented by MrGaster last updated on 10/Jul/25
So the specific proof process ...
Answered by MrGaster last updated on 10/Jul/25
  =(2/( (√π)))∫_0 ^k ∫_0 ^∞ t^(a+1) e^(−v^2 t^2 ) dtdv  =(2/( (√π)))∫_0 ^k Σ_(n=0) ^∞ (((−1)^n v^(2n) )/(n!))∫_0 ^∞ t^(a+1+2n) e^(−t) dtdv  =(2/( (√π)))∫_0 ^k Σ_(n=0) ^∞ (((−1)^n v^(2n) )/(n!))Γ(a+2n+2)dv  =(2/( (√π)))Σ_(n=0) ^∞ (((−1)^n Γ(a+2n+2))/(n!))∫_0 ^k v^(2n) dv  =(2/( (√π)))Σ_(n=0) ^∞ (((−1)^n Γ(a+2n+2))/(n!)) (k^(2n+1) /(2n+1))  =((Γ(a+1))/( (√π)))∙_2 F_1 ((1/2),a+1;(3/2);−k^2 )
$$ \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{{k}} \int_{\mathrm{0}} ^{\infty} {t}^{{a}+\mathrm{1}} {e}^{−{v}^{\mathrm{2}} {t}^{\mathrm{2}} } {dtdv} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{{k}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {v}^{\mathrm{2}{n}} }{{n}!}\int_{\mathrm{0}} ^{\infty} {t}^{{a}+\mathrm{1}+\mathrm{2}{n}} {e}^{−{t}} {dtdv} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{{k}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {v}^{\mathrm{2}{n}} }{{n}!}\Gamma\left({a}+\mathrm{2}{n}+\mathrm{2}\right){dv} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\pi}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \Gamma\left({a}+\mathrm{2}{n}+\mathrm{2}\right)}{{n}!}\int_{\mathrm{0}} ^{{k}} {v}^{\mathrm{2}{n}} {dv} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\pi}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \Gamma\left({a}+\mathrm{2}{n}+\mathrm{2}\right)}{{n}!}\:\frac{{k}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\frac{\Gamma\left({a}+\mathrm{1}\right)}{\:\sqrt{\pi}}\centerdot_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},{a}+\mathrm{1};\frac{\mathrm{3}}{\mathrm{2}};−{k}^{\mathrm{2}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *