Menu Close

Question-222908




Question Number 222908 by Nicholas666 last updated on 10/Jul/25
Answered by Ak090 last updated on 10/Jul/25
d/dx ln(cosh x) = tanh x  d/dx^p (√x) using the formula d/dx f^(−1) (x)  = 1/f′(f^(−1) (x)) = 1/px^((p−1)/p)   so d/dx^p (√(cosh x)) = sinh x / pcosh^((p−1)/p)   same for the other root  I will denote the new radicals by their upper case letters  so the equation becomes tanh x /(sinh x / P − sinh x / Q)  = tanh x /( Qsinh x − Psinh x )/(PQ)  =tanh x / sinh x (Q−P)/PQ  =PQ/(cosh x)/Q−P  =PQsech x / Q−P    return to the original form  pqcosh^((p−1)/p+(q−1)/q) x sech x /(qcosh^((q−1)/q) −pcosh^((p−1)/p) )  to delete sech x multiply the numerator and denominator by cosh x  it becomes  pqcosh^((p−1)/p+(q−1)/q) x/(qcosh x−pcosh x)  substitute x = 0 it becomes  pq/(q−p)     (Q.E.D)
$${d}/{dx}\:{ln}\left({cosh}\:{x}\right)\:=\:{tanh}\:{x} \\ $$$${d}/{dx}\:^{{p}} \sqrt{{x}}\:\mathrm{using}\:\mathrm{the}\:\mathrm{formula}\:{d}/{dx}\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$=\:\mathrm{1}/{f}'\left({f}^{−\mathrm{1}} \left({x}\right)\right)\:=\:\mathrm{1}/{px}^{\left({p}−\mathrm{1}\right)/{p}} \\ $$$$\mathrm{so}\:{d}/{dx}\:^{{p}} \sqrt{{cosh}\:{x}}\:=\:{sinh}\:{x}\:/\:{pcosh}^{\left({p}−\mathrm{1}\right)/{p}} \\ $$$$\mathrm{same}\:\mathrm{for}\:\mathrm{the}\:\mathrm{other}\:\mathrm{root} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{new}\:\mathrm{radicals}\:\mathrm{by}\:\mathrm{their}\:\mathrm{upper}\:\mathrm{case}\:\mathrm{letters} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{becomes}\:{tanh}\:{x}\:/\left({sinh}\:{x}\:/\:{P}\:−\:{sinh}\:{x}\:/\:{Q}\right) \\ $$$$=\:{tanh}\:{x}\:/\left(\:{Qsinh}\:{x}\:−\:{Psinh}\:{x}\:\right)/\left({PQ}\right) \\ $$$$={tanh}\:{x}\:/\:{sinh}\:{x}\:\left({Q}−{P}\right)/{PQ} \\ $$$$={PQ}/\left({cosh}\:{x}\right)/{Q}−{P} \\ $$$$={PQsech}\:{x}\:/\:{Q}−{P}\:\:\:\:\mathrm{return}\:\mathrm{to}\:\mathrm{the}\:\mathrm{original}\:\mathrm{form} \\ $$$${pqcosh}^{\left({p}−\mathrm{1}\right)/{p}+\left({q}−\mathrm{1}\right)/{q}} {x}\:{sech}\:{x}\:/\left({qcosh}^{\left({q}−\mathrm{1}\right)/{q}} −{pcosh}^{\left({p}−\mathrm{1}\right)/{p}} \right) \\ $$$$\mathrm{to}\:\mathrm{delete}\:\mathrm{sech}\:\mathrm{x}\:\mathrm{multiply}\:\mathrm{the}\:\mathrm{numerator}\:\mathrm{and}\:\mathrm{denominator}\:\mathrm{by}\:\mathrm{cosh}\:\mathrm{x} \\ $$$$\mathrm{it}\:\mathrm{becomes} \\ $$$${pqcosh}^{\left({p}−\mathrm{1}\right)/{p}+\left({q}−\mathrm{1}\right)/{q}} {x}/\left({qcosh}\:{x}−{pcosh}\:{x}\right) \\ $$$${substitute}\:{x}\:=\:\mathrm{0}\:\mathrm{it}\:\mathrm{becomes} \\ $$$${pq}/\left({q}−{p}\right)\:\:\:\:\:\left({Q}.{E}.{D}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *