Menu Close

Question-222958




Question Number 222958 by mr W last updated on 11/Jul/25
Commented by mr W last updated on 12/Jul/25
find the area of the smallest   inscribed equilateral triangle of a  given triangle with sides of lengthes  3, 5, 7 respectively.
$${find}\:{the}\:{area}\:{of}\:{the}\:{smallest}\: \\ $$$${inscribed}\:{equilateral}\:{triangle}\:{of}\:{a} \\ $$$${given}\:{triangle}\:{with}\:{sides}\:{of}\:{lengthes} \\ $$$$\mathrm{3},\:\mathrm{5},\:\mathrm{7}\:{respectively}. \\ $$
Commented by Ghisom last updated on 12/Jul/25
do you have a solution?  I get sidelength of △ ((15(√3))/(16))≈1.62  ⇒ area is ((675(√3))/(1024))≈1.14  ...there seems to be only one △  can you confirm this? I made some assumptions  which could be wrong... I′ll post my path  later.
$$\mathrm{do}\:\mathrm{you}\:\mathrm{have}\:\mathrm{a}\:\mathrm{solution}? \\ $$$$\mathrm{I}\:\mathrm{get}\:\mathrm{sidelength}\:\mathrm{of}\:\bigtriangleup\:\frac{\mathrm{15}\sqrt{\mathrm{3}}}{\mathrm{16}}\approx\mathrm{1}.\mathrm{62} \\ $$$$\Rightarrow\:\mathrm{area}\:\mathrm{is}\:\frac{\mathrm{675}\sqrt{\mathrm{3}}}{\mathrm{1024}}\approx\mathrm{1}.\mathrm{14} \\ $$$$…\mathrm{there}\:\mathrm{seems}\:\mathrm{to}\:\mathrm{be}\:\mathrm{only}\:\mathrm{one}\:\bigtriangleup \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{confirm}\:\mathrm{this}?\:\mathrm{I}\:\mathrm{made}\:\mathrm{some}\:\mathrm{assumptions} \\ $$$$\mathrm{which}\:\mathrm{could}\:\mathrm{be}\:\mathrm{wrong}…\:\mathrm{I}'\mathrm{ll}\:\mathrm{post}\:\mathrm{my}\:\mathrm{path} \\ $$$$\mathrm{later}. \\ $$
Commented by mr W last updated on 13/Jul/25
yes, that′s correct.  there are infinite such equilateral  triangles. but there is a minimum.
$${yes},\:{that}'{s}\:{correct}. \\ $$$${there}\:{are}\:{infinite}\:{such}\:{equilateral} \\ $$$${triangles}.\:{but}\:{there}\:{is}\:{a}\:{minimum}. \\ $$
Commented by mr W last updated on 13/Jul/25
please show your path. thanks.
$${please}\:{show}\:{your}\:{path}.\:{thanks}. \\ $$
Commented by mr W last updated on 17/Jul/25
Commented by mr W last updated on 17/Jul/25
say the smallest inscribed equilateral  triangle is s_(min) .  all triangles with angles α,β,γ are  similar.  for an equilateral triangle with   given side length 1 we can find its  largest circumtriangle with given  angles α,β,γ. say the sides of this  triangle are a′,b′,c′ respectively.  we know  (s_(min) /1)=(a/(a′))=(b/(b′))=(c/(c′))  in this way we can find  s_(min) =((2(√2)Δ)/( (√(a^2 +b^2 +c^2 +4(√3)Δ))))  with Δ=area of triangle ABC.
$${say}\:{the}\:{smallest}\:{inscribed}\:{equilateral} \\ $$$${triangle}\:{is}\:{s}_{{min}} . \\ $$$${all}\:{triangles}\:{with}\:{angles}\:\alpha,\beta,\gamma\:{are} \\ $$$${similar}. \\ $$$${for}\:{an}\:{equilateral}\:{triangle}\:{with}\: \\ $$$${given}\:{side}\:{length}\:\mathrm{1}\:{we}\:{can}\:{find}\:{its} \\ $$$${largest}\:{circumtriangle}\:{with}\:{given} \\ $$$${angles}\:\alpha,\beta,\gamma.\:{say}\:{the}\:{sides}\:{of}\:{this} \\ $$$${triangle}\:{are}\:{a}',{b}',{c}'\:{respectively}. \\ $$$${we}\:{know} \\ $$$$\frac{{s}_{{min}} }{\mathrm{1}}=\frac{{a}}{{a}'}=\frac{{b}}{{b}'}=\frac{{c}}{{c}'} \\ $$$${in}\:{this}\:{way}\:{we}\:{can}\:{find} \\ $$$${s}_{{min}} =\frac{\mathrm{2}\sqrt{\mathrm{2}}\Delta}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}\Delta}} \\ $$$${with}\:\Delta={area}\:{of}\:{triangle}\:{ABC}. \\ $$
Answered by gabthemathguy25 last updated on 12/Jul/25
s=((3+5+7)/2)=7.5  (√(7.5(7.5−3)(7.5−5)(7.5−7)))  ⇒(√(7.5(4.5)(2.5)(0.5)))  ⇒≈(√(42.1875))≈6.5  0.2 × 6.5 ≈ 1.3
$${s}=\frac{\mathrm{3}+\mathrm{5}+\mathrm{7}}{\mathrm{2}}=\mathrm{7}.\mathrm{5} \\ $$$$\sqrt{\mathrm{7}.\mathrm{5}\left(\mathrm{7}.\mathrm{5}−\mathrm{3}\right)\left(\mathrm{7}.\mathrm{5}−\mathrm{5}\right)\left(\mathrm{7}.\mathrm{5}−\mathrm{7}\right)} \\ $$$$\Rightarrow\sqrt{\mathrm{7}.\mathrm{5}\left(\mathrm{4}.\mathrm{5}\right)\left(\mathrm{2}.\mathrm{5}\right)\left(\mathrm{0}.\mathrm{5}\right)} \\ $$$$\Rightarrow\approx\sqrt{\mathrm{42}.\mathrm{1875}}\approx\mathrm{6}.\mathrm{5} \\ $$$$\mathrm{0}.\mathrm{2}\:×\:\mathrm{6}.\mathrm{5}\:\approx\:\mathrm{1}.\mathrm{3} \\ $$
Commented by Hanuda354 last updated on 12/Jul/25
What do you mean,  ”0.2 × 6.5” ?
$$\mathrm{What}\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean},\:\:''\mathrm{0}.\mathrm{2}\:×\:\mathrm{6}.\mathrm{5}''\:? \\ $$
Commented by mr W last updated on 12/Jul/25
how can you say this?  this question is quite hard.
$${how}\:{can}\:{you}\:{say}\:{this}? \\ $$$${this}\:{question}\:{is}\:{quite}\:{hard}. \\ $$
Commented by gabthemathguy25 last updated on 12/Jul/25
Theres no formula for an equilateral triangle inscribes in a triangle, so i approximated. 0.2 because empirically, the smallest inscribed equilateral triangle often has an area about 20%-25% of the triangle's area (from geometric results).
Commented by AntonCWX8 last updated on 12/Jul/25
No worry sir.  He is very good in approximating stuffs.  Just look at his attempts at those hard integrals and you′ll see.
$${No}\:{worry}\:{sir}. \\ $$$${He}\:{is}\:{very}\:{good}\:{in}\:{approximating}\:{stuffs}. \\ $$$${Just}\:{look}\:{at}\:{his}\:{attempts}\:{at}\:{those}\:{hard}\:{integrals}\:{and}\:{you}'{ll}\:{see}. \\ $$
Commented by mr W last updated on 12/Jul/25
in current case he is even not  approximating, but just guessing.  sorry, here we are talking about   “mathematics”, such guessing or  approximating don′t make any  sense, they are actually just spam.  if we can′t solve a question,  we can just leave it unsolved. we  don′t need to post a naked value  or approximation or something  obtained by using a calculator or   an AI app or WolframAlpha or   whatever without any path. because   other people have asked questions,   not because they don′t have a   calculator or AI app or whatever,   but they want an accurate  “mathematic” solution with path.
$${in}\:{current}\:{case}\:{he}\:{is}\:{even}\:{not} \\ $$$${approximating},\:{but}\:{just}\:{guessing}. \\ $$$${sorry},\:{here}\:{we}\:{are}\:{talking}\:{about}\: \\ $$$$“{mathematics}'',\:{such}\:{guessing}\:{or} \\ $$$${approximating}\:{don}'{t}\:{make}\:{any} \\ $$$${sense},\:{they}\:{are}\:{actually}\:{just}\:{spam}. \\ $$$${if}\:{we}\:{can}'{t}\:{solve}\:{a}\:{question}, \\ $$$${we}\:{can}\:{just}\:{leave}\:{it}\:{unsolved}.\:{we} \\ $$$${don}'{t}\:{need}\:{to}\:{post}\:{a}\:{naked}\:{value} \\ $$$${or}\:{approximation}\:{or}\:{something} \\ $$$${obtained}\:{by}\:{using}\:{a}\:{calculator}\:{or}\: \\ $$$${an}\:{AI}\:{app}\:{or}\:{WolframAlpha}\:{or}\: \\ $$$${whatever}\:{without}\:{any}\:{path}.\:{because}\: \\ $$$${other}\:{people}\:{have}\:{asked}\:{questions},\: \\ $$$${not}\:{because}\:{they}\:{don}'{t}\:{have}\:{a}\: \\ $$$${calculator}\:{or}\:{AI}\:{app}\:{or}\:{whatever},\: \\ $$$${but}\:{they}\:{want}\:{an}\:{accurate} \\ $$$$“{mathematic}''\:{solution}\:{with}\:{path}. \\ $$
Answered by AntonCWX8 last updated on 12/Jul/25
Denote   P = point touching base BC  L=length of equilateral triangle  α=∠ABC  x = BP  PC = 7−x    (L/(sin(21.8°)))=((7−x)/(sin(180°−α)))⇒L=(((7−x)sin(21.8°))/(sin(180°−α)))  (L/(sin(38.2°)))=(x/(sin(α)))⇒L=((xsin(38.2°))/(sin(α)))    (((7−x)sin(21.8°))/(sin(180°−α)))=((xsin(38.2))/(sin(α))), 0<x<7    Only solution:  x≈2.626  but α does not exist...  not sure why...
$${Denote}\: \\ $$$${P}\:=\:{point}\:{touching}\:{base}\:{BC} \\ $$$${L}={length}\:{of}\:{equilateral}\:{triangle} \\ $$$$\alpha=\angle{ABC} \\ $$$${x}\:=\:{BP} \\ $$$${PC}\:=\:\mathrm{7}−{x} \\ $$$$ \\ $$$$\frac{{L}}{{sin}\left(\mathrm{21}.\mathrm{8}°\right)}=\frac{\mathrm{7}−{x}}{{sin}\left(\mathrm{180}°−\alpha\right)}\Rightarrow{L}=\frac{\left(\mathrm{7}−{x}\right){sin}\left(\mathrm{21}.\mathrm{8}°\right)}{{sin}\left(\mathrm{180}°−\alpha\right)} \\ $$$$\frac{{L}}{{sin}\left(\mathrm{38}.\mathrm{2}°\right)}=\frac{{x}}{{sin}\left(\alpha\right)}\Rightarrow{L}=\frac{{xsin}\left(\mathrm{38}.\mathrm{2}°\right)}{{sin}\left(\alpha\right)} \\ $$$$ \\ $$$$\frac{\left(\mathrm{7}−{x}\right){sin}\left(\mathrm{21}.\mathrm{8}°\right)}{{sin}\left(\mathrm{180}°−\alpha\right)}=\frac{{xsin}\left(\mathrm{38}.\mathrm{2}\right)}{{sin}\left(\alpha\right)},\:\mathrm{0}<{x}<\mathrm{7} \\ $$$$ \\ $$$${Only}\:{solution}: \\ $$$${x}\approx\mathrm{2}.\mathrm{626} \\ $$$${but}\:\alpha\:{does}\:{not}\:{exist}… \\ $$$${not}\:{sure}\:{why}… \\ $$
Commented by AntonCWX8 last updated on 12/Jul/25
This is what I′m expecting myself to do.  Not sure if there is another approach...
$${This}\:{is}\:{what}\:{I}'{m}\:{expecting}\:{myself}\:{to}\:{do}. \\ $$$${Not}\:{sure}\:{if}\:{there}\:{is}\:{another}\:{approach}… \\ $$
Commented by AntonCWX8 last updated on 12/Jul/25
Commented by mr W last updated on 12/Jul/25
thanks for trying!
$${thanks}\:{for}\:{trying}! \\ $$
Commented by AntonCWX8 last updated on 12/Jul/25
I think I know why.  sin(180°−α)=sin(α)
$${I}\:{think}\:{I}\:{know}\:{why}. \\ $$$${sin}\left(\mathrm{180}°−\alpha\right)={sin}\left(\alpha\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *