Menu Close

If-xy-e-4-Find-tg-ln-x-3-y-tg-ln-y-3-x-




Question Number 223179 by hardmath last updated on 16/Jul/25
If:   xy = e^(𝛑/4)   Find:   tg (ln ((x^3 /y))) βˆ™ tg (ln ((y^3 /x))) = ?
$$\mathrm{If}:\:\:\:\mathrm{xy}\:=\:\boldsymbol{\mathrm{e}}^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{tg}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{y}}\right)\right)\:\centerdot\:\mathrm{tg}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{y}^{\mathrm{3}} }{\mathrm{x}}\right)\right)\:=\:? \\ $$
Commented by hardmath last updated on 16/Jul/25
no dear professor, answer:  a)1     b)(1/e)     c)(1/Ο€)     d)(e/Ο€)     e)(Ο€/e)
$$\mathrm{no}\:\mathrm{dear}\:\mathrm{professor},\:\mathrm{answer}: \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{1}\left.\:\left.\:\:\:\:\mathrm{b}\right)\frac{\mathrm{1}}{\mathrm{e}}\:\:\:\:\:\mathrm{c}\right)\frac{\mathrm{1}}{\pi}\:\:\:\:\:\mathrm{d}\right)\frac{\mathrm{e}}{\pi}\:\:\:\:\:\mathrm{e}\right)\frac{\pi}{\mathrm{e}} \\ $$
Answered by mr W last updated on 16/Jul/25
let X=ln x, Y=ln y  ln (xy)=X+Y=(Ο€/4)  tan (ln ((x^3 /y)))βˆ™tan (ln ((y^3 /x)))  =tan (3Xβˆ’Y)βˆ™tan (3Yβˆ’X)  =tan (4Xβˆ’Xβˆ’Y)βˆ™tan (3Y+3Xβˆ’4X)  =tan (4Xβˆ’(Ο€/4))βˆ™tan (((3Ο€)/4)βˆ’4X)  =tan (4Xβˆ’(Ο€/4))βˆ™tan ((Ο€/2)βˆ’(4Xβˆ’(Ο€/4)))  =tan (4Xβˆ’(Ο€/4))βˆ™cot (4Xβˆ’(Ο€/4))  =1 βœ“
$${let}\:{X}=\mathrm{ln}\:{x},\:{Y}=\mathrm{ln}\:{y} \\ $$$$\mathrm{ln}\:\left({xy}\right)={X}+{Y}=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{tan}\:\left(\mathrm{ln}\:\left(\frac{{x}^{\mathrm{3}} }{{y}}\right)\right)\centerdot\mathrm{tan}\:\left(\mathrm{ln}\:\left(\frac{{y}^{\mathrm{3}} }{{x}}\right)\right) \\ $$$$=\mathrm{tan}\:\left(\mathrm{3}{X}βˆ’{Y}\right)\centerdot\mathrm{tan}\:\left(\mathrm{3}{Y}βˆ’{X}\right) \\ $$$$=\mathrm{tan}\:\left(\mathrm{4}{X}βˆ’{X}βˆ’{Y}\right)\centerdot\mathrm{tan}\:\left(\mathrm{3}{Y}+\mathrm{3}{X}βˆ’\mathrm{4}{X}\right) \\ $$$$=\mathrm{tan}\:\left(\mathrm{4}{X}βˆ’\frac{\pi}{\mathrm{4}}\right)\centerdot\mathrm{tan}\:\left(\frac{\mathrm{3}\pi}{\mathrm{4}}βˆ’\mathrm{4}{X}\right) \\ $$$$=\mathrm{tan}\:\left(\mathrm{4}{X}βˆ’\frac{\pi}{\mathrm{4}}\right)\centerdot\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}βˆ’\left(\mathrm{4}{X}βˆ’\frac{\pi}{\mathrm{4}}\right)\right) \\ $$$$=\mathrm{tan}\:\left(\mathrm{4}{X}βˆ’\frac{\pi}{\mathrm{4}}\right)\centerdot\mathrm{cot}\:\left(\mathrm{4}{X}βˆ’\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\mathrm{1}\:\checkmark \\ $$
Commented by mehdee7396 last updated on 16/Jul/25
in line 6  β‡’tan(4Xβˆ’(Ο€/4))Γ—tan(((3Ο€)/4)βˆ’4X)  β‡’((tan4Xβˆ’1)/(1+tan4X))Γ—((βˆ’1βˆ’tan4X)/(1βˆ’tan4X))=1
$${in}\:{line}\:\mathrm{6} \\ $$$$\Rightarrow{tan}\left(\mathrm{4}{X}βˆ’\frac{\pi}{\mathrm{4}}\right)Γ—{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{4}}βˆ’\mathrm{4}{X}\right) \\ $$$$\Rightarrow\frac{{tan}\mathrm{4}{X}βˆ’\mathrm{1}}{\mathrm{1}+{tan}\mathrm{4}{X}}Γ—\frac{βˆ’\mathrm{1}βˆ’{tan}\mathrm{4}{X}}{\mathrm{1}βˆ’{tan}\mathrm{4}{X}}=\mathrm{1} \\ $$$$ \\ $$
Commented by hardmath last updated on 16/Jul/25
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *