Menu Close

Question-223213




Question Number 223213 by mr W last updated on 18/Jul/25
Commented by mr W last updated on 18/Jul/25
find the area of rectangle ABCD.
$${find}\:{the}\:{area}\:{of}\:{rectangle}\:{ABCD}. \\ $$
Answered by gregori last updated on 18/Jul/25
 Let BC = a , CD = b     AE =(6/b) , FD = ((12)/b)    ((EF)/a) = (√(4/(ab−9))) ⇒ ((a−((18)/b))/a) = (2/( (√(ab−5))))    ((ab−18)/(ab)) = (2/( (√(ab−5)))) , ab = L    (((L−18)^2 )/L^2 ) = (4/(L−5))   then we get L = 30
$$\:{Let}\:{BC}\:=\:{a}\:,\:{CD}\:=\:{b}\: \\ $$$$\:\:{AE}\:=\frac{\mathrm{6}}{{b}}\:,\:{FD}\:=\:\frac{\mathrm{12}}{{b}} \\ $$$$\:\:\frac{{EF}}{{a}}\:=\:\sqrt{\frac{\mathrm{4}}{{ab}−\mathrm{9}}}\:\Rightarrow\:\frac{{a}−\frac{\mathrm{18}}{{b}}}{{a}}\:=\:\frac{\mathrm{2}}{\:\sqrt{{ab}−\mathrm{5}}} \\ $$$$\:\:\frac{{ab}−\mathrm{18}}{{ab}}\:=\:\frac{\mathrm{2}}{\:\sqrt{{ab}−\mathrm{5}}}\:,\:{ab}\:=\:{L} \\ $$$$\:\:\frac{\left({L}−\mathrm{18}\right)^{\mathrm{2}} }{{L}^{\mathrm{2}} }\:=\:\frac{\mathrm{4}}{{L}−\mathrm{5}} \\ $$$$\:{then}\:{we}\:{get}\:{L}\:=\:\mathrm{30}\: \\ $$$$\: \\ $$
Answered by mr W last updated on 18/Jul/25
Commented by mr W last updated on 18/Jul/25
((6+3)/4)=(((FC)/(FG)))^2   ((x+6+3)/(x+4))=((FC)/(FG))=(√((6+3)/4))=(3/2)  ⇒x=6  area of [ABCD]=2(x+6+2)=30 ✓
$$\frac{\mathrm{6}+\mathrm{3}}{\mathrm{4}}=\left(\frac{{FC}}{{FG}}\right)^{\mathrm{2}} \\ $$$$\frac{{x}+\mathrm{6}+\mathrm{3}}{{x}+\mathrm{4}}=\frac{{FC}}{{FG}}=\sqrt{\frac{\mathrm{6}+\mathrm{3}}{\mathrm{4}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{6} \\ $$$${area}\:{of}\:\left[{ABCD}\right]=\mathrm{2}\left({x}+\mathrm{6}+\mathrm{2}\right)=\mathrm{30}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *