Question Number 223270 by Tawa11 last updated on 20/Jul/25

At a given instant, two cars are at distances
600m and 800m from the point of intersection
of the straight roads crossing at right angles
and approaching O at uniform speeds of 20 m/s
and 30 m/s respectively.
Find the shortest distance between the cars
and the time taken to reach this position.
600m and 800m from the point of intersection
of the straight roads crossing at right angles
and approaching O at uniform speeds of 20 m/s
and 30 m/s respectively.
Find the shortest distance between the cars
and the time taken to reach this position.
Answered by mr W last updated on 20/Jul/25

Commented by mr W last updated on 20/Jul/25

$${y}=\mathrm{800}+\frac{\mathrm{3}}{\mathrm{2}}\left({x}−\mathrm{600}\right)\:\Rightarrow\:\mathrm{3}{x}−\mathrm{2}{y}−\mathrm{200}=\mathrm{0} \\ $$$${d}_{{min}} =\frac{\mid\mathrm{3}×\mathrm{0}−\mathrm{2}×\mathrm{0}−\mathrm{200}\mid}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}=\frac{\mathrm{200}}{\:\sqrt{\mathrm{13}}}\approx\mathrm{55}.\mathrm{47}\:{m} \\ $$$${t}=\frac{\sqrt{\mathrm{600}^{\mathrm{2}} +\mathrm{800}^{\mathrm{2}} −\left(\frac{\mathrm{200}}{\:\sqrt{\mathrm{13}}}\right)^{\mathrm{2}} }}{\:\sqrt{\mathrm{30}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} }}=\frac{\mathrm{360}}{\mathrm{13}}\approx\mathrm{27}.\mathrm{69}\:{s} \\ $$
Commented by Tawa11 last updated on 20/Jul/25

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 20/Jul/25

$${usual}\:{method}: \\ $$$$\Phi={d}^{\mathrm{2}} =\left(\mathrm{600}−\mathrm{20}{t}\right)^{\mathrm{2}} +\left(\mathrm{800}−\mathrm{30}{t}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:=\mathrm{1300}{t}^{\mathrm{2}} −\mathrm{72000}{t}+\mathrm{1000000} \\ $$$$\frac{{d}\Phi}{{dt}}=\mathrm{2}×\mathrm{1300}{t}−\mathrm{72000}=\mathrm{0} \\ $$$$\Rightarrow{t}=\frac{\mathrm{72000}}{\mathrm{2}×\mathrm{1300}}=\frac{\mathrm{360}}{\mathrm{13}}\approx\mathrm{27}.\mathrm{69}\:{s} \\ $$$${d}_{{min}} =\sqrt{\left(\mathrm{600}−\mathrm{20}×\frac{\mathrm{360}}{\mathrm{13}}\right)^{\mathrm{2}} +\left(\mathrm{800}−\mathrm{30}×\frac{\mathrm{360}}{\mathrm{13}}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{200}}{\:\sqrt{\mathrm{13}}}\approx\mathrm{55}.\mathrm{47}\:{m} \\ $$
Commented by Tawa11 last updated on 20/Jul/25

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$