Question Number 223348 by cryptograph last updated on 21/Jul/25

$${Determine}\:{gcd}\left(\mathrm{13}{a}+\mathrm{19}{b},{ab}\right)\:{given}\:{that}\:{gcd}\left({a},\mathrm{19}\right)={gcd}\left({b},\mathrm{13}\right)=\mathrm{1} \\ $$
Commented by A5T last updated on 23/Jul/25

$$\mathrm{This}\:\mathrm{isn}'\mathrm{t}\:\mathrm{unique}.\:\mathrm{a}=\mathrm{1}\:\mathrm{and}\:\mathrm{b}=\mathrm{1}\Rightarrow\:\mathrm{gcd}\left(\mathrm{32},\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{a}=\mathrm{2}\:\mathrm{and}\:\mathrm{b}=\mathrm{2}\:\Rightarrow\:\mathrm{gcd}\left(\mathrm{64},\mathrm{4}\right)=\mathrm{4} \\ $$
Answered by Raphael254 last updated on 24/Jul/25

$${a}\:\neq\:\mathrm{19}{p},\:{p}\:\in\:\mathbb{Z}^{\ast} \\ $$$${b}\:\neq\:\mathrm{13}{q},\:{q}\:\in\:\mathbb{Z}^{\ast} \\ $$$$ \\ $$$${gcd}\left(\mathrm{13}{a}\:+\:\mathrm{19}{b},\:{ab}\right) \\ $$$$ \\ $$$${if}\:\exists{k}\:\in\:\mathbb{Z}^{\ast} \:\Rightarrow\:{ab}\:=\:{k}\left(\mathrm{13}{a}\:+\:\mathrm{19}{b}\right), \\ $$$${k}\:=\:\frac{{ab}}{\mathrm{13}\:{a}\:+\:\mathrm{19}{b}},\:{gcd}\left(\mathrm{13}{a}\:+\:\mathrm{19}{b},\:{ab}\right)\:=\:\mid\mathrm{13}\:{a}\:+\:\mathrm{19}{b}\mid, \\ $$$${if}\:{not},\:{gcd}\left(\mathrm{13}{a}\:+\:\mathrm{19}{b},\:{ab}\right)\:=\:\mathrm{1} \\ $$$$ \\ $$$$\frac{{ab}}{\mathrm{13}{a}\:+\:\mathrm{19}{b}}\:=\:\frac{{b}}{\mathrm{13}}\:−\:\frac{\mathrm{19}{b}^{\mathrm{2}} }{\mathrm{13}^{\mathrm{2}} {a}}\:+\:\frac{\mathrm{19}^{\mathrm{2}} {b}^{\mathrm{3}} }{\mathrm{13}^{\mathrm{3}} {a}^{\mathrm{2}} }\:−\:…\:\pm\:\frac{\mathrm{19}^{{n}−\mathrm{1}} {b}^{{n}} }{\mathrm{13}^{{n}} {a}^{{n}−\mathrm{1}} },\:{n}\:\in\:\mathbb{N}^{\ast} \:{and}\:{means}\:{number}\:{of}\:{terms}. \\ $$$$ \\ $$$${There}\:{is}\:{something}\:{interesting}\:{in}\:{this};\:{if}\:{a}\:=\:\mathrm{19}{p}\:{and}\:{b}\:=\:\mathrm{13}{q}: \\ $$$$ \\ $$$$\frac{\mathrm{19}{p}×\mathrm{13}{q}}{\mathrm{13}×\mathrm{19}{p}\:+\:\mathrm{19}×\mathrm{13}{q}}\:=\:\frac{\mathrm{19}×\mathrm{13}\left({pq}\right)}{\mathrm{19}×\mathrm{13}\left({p}\:+\:{q}\right)}\:=\:\frac{{pq}}{{p}\:+\:{q}}\:=\:\frac{{p}\left({q}\right)}{{p}\left(\mathrm{1}\:+\:\frac{{q}}{{p}}\right)}\:\:=\:\frac{{q}}{\:\mathrm{1}\:+\:\frac{{q}}{{p}}} \\ $$$$ \\ $$$${q}\:=\:{k}\left(\mathrm{1}\:+\:\frac{{q}}{{p}}\right)\:\Leftrightarrow\:\frac{{pq}\:−\:{kp}\:−\:{kq}}{{p}}\:=\:\mathrm{0}\:\Rightarrow\:{q}\:−\:{k}\:−\:\frac{{kq}}{{p}}\:=\:\mathrm{0} \\ $$$$ \\ $$$${Per}\:{example}:\:\left({p}\:\leq\:{q}\:{and}\:{q}\:{multiple}\:{of}\:{p}\right) \\ $$$$ \\ $$$${p}\:=\:\mathrm{2},\:{q}\:=\:\mathrm{6} \\ $$$$ \\ $$$$\mathrm{6}\:−\:{k}\:−\:\frac{\mathrm{6}{k}}{\mathrm{2}}\:=\:\mathrm{0} \\ $$$$−\mathrm{4}{k}\:=\:−\mathrm{6} \\ $$$${k}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\notin\:\mathbb{Z}^{\ast} \\ $$$$ \\ $$$${p}\:=\:\mathrm{3},\:{q}\:=\:\mathrm{6} \\ $$$$ \\ $$$$\mathrm{6}\:−\:{k}\:−\:\frac{\mathrm{6}{k}}{\mathrm{3}}\:=\:\mathrm{0} \\ $$$$−\mathrm{3}{k}\:=\:−\mathrm{6} \\ $$$${k}\:=\:\mathrm{2} \\ $$$$ \\ $$$${Proof}: \\ $$$$ \\ $$$${q}\:=\:{k}\left(\mathrm{1}\:+\:\frac{{q}}{{p}}\right) \\ $$$$\mathrm{6}\:=\:\mathrm{2}\left(\mathrm{1}\:+\:\frac{\mathrm{6}}{\mathrm{3}}\right) \\ $$$$\mathrm{6}\:=\:\mathrm{6} \\ $$$$ \\ $$$${a}\:=\mathrm{19}{p}\:{and}\:{b}\:=\:\mathrm{13}{q} \\ $$$${a}\:=\:\mathrm{19}×\mathrm{3}\:=\:\mathrm{57} \\ $$$${b}\:=\:\mathrm{13}×\mathrm{6}\:=\:\mathrm{78} \\ $$$$ \\ $$$$\mathrm{13}{a}\:+\:\mathrm{19}{b}\:=\:\mathrm{13}×\mathrm{57}\:+\:\mathrm{19}×\mathrm{78} \\ $$$${ab}\:=\:\mathrm{57}×\mathrm{78} \\ $$$$ \\ $$$${k}\:=\:\frac{\mathrm{57}×\mathrm{78}}{\mathrm{13}×\mathrm{57}\:+\:\mathrm{19}×\mathrm{78}}\:=\:\mathrm{2} \\ $$$$ \\ $$$${It}\:{means}\:{that}\:{the}\:{same}\:{k}\:{we}\:{found}\:{before}\:{is}\:{the}\:{same}\:{of}\:{this}\:{time},\:{so}: \\ $$$${But}\:{how}\:{we}\:{are}\:{considering}\:{a}\:\neq\:\mathrm{19}{p}\:{and}\:{b}\:\neq\:\mathrm{13}{q},\:{it}\:{is}\:{not}\:{necessary}\:{to}\:{calculate}\:{it}. \\ $$$$ \\ $$$${if}\:{a}\:=\:{b}: \\ $$$$ \\ $$$$\frac{{a}^{\mathrm{2}} }{\mathrm{13}{a}\:+\:\mathrm{19}{a}}\:=\:\frac{{a}}{\mathrm{13}\:+\:\mathrm{19}}\:=\:\frac{{a}}{\mathrm{32}},\:{here}\:{we}\:{can}\:{see}\:{that}\:{the}\:{only}\:{values}\:{of}\:\boldsymbol{{a}}\:{possible}\:{is}\:\boldsymbol{{a}}\:=\:\mathrm{32}{k},\:{k}\:\in\:\mathbb{Z}^{\ast} .\:{In}\:{this}\:{case},\:{gcd}\left(\mathrm{13}{a}\:+\:\mathrm{19}{b},\:{ab}\right)\:=\:\mid\mathrm{13}\left(\mathrm{32}{k}\right)\:+\:\mathrm{19}\left(\mathrm{32}{k}\right)\mid\:=\:\mid\mathrm{416}{k}\:+\:\mathrm{608}{k}\mid\:=\:\mid\mathrm{1024}{k}\mid\:{or}\:\mid\left(\mathrm{2}^{\mathrm{10}} \right){k}\mid \\ $$$$ \\ $$$${See}\:{that}\:{there}\:{are}\:{infinites}\:{gcds},\:{when}\:{ab}\:\geq\:\mathrm{13}{b}\:+\:\mathrm{19}{b}.\:{So}\:{doesn}'{t}\:{exist}\:{a}\:{maximum}\:{gcd}\:{in}\:{this}\:{case}. \\ $$$$ \\ $$$${But}\:{anyway}: \\ $$$$ \\ $$$$\frac{{a}}{\mathrm{32}}\:=\:\frac{{a}}{\mathrm{13}}\:−\:\frac{\mathrm{19}{a}^{\mathrm{2}} }{\mathrm{13}^{\mathrm{2}} {a}}\:+\:\frac{\mathrm{19}^{\mathrm{2}} {a}^{\mathrm{3}} }{\mathrm{13}^{\mathrm{3}} {a}^{\mathrm{2}} }\:−\:…\:\pm\:\frac{\mathrm{19}^{{n}−\mathrm{1}} {a}^{{n}} }{\mathrm{13}^{{n}} {a}^{{n}−\mathrm{1}} },\:{n}\:\in\:\mathbb{N}^{\ast} \\ $$$$\frac{{a}}{\mathrm{32}}\:=\:\frac{{a}}{\mathrm{13}}\:−\:\frac{\mathrm{19}{a}}{\mathrm{13}^{\mathrm{2}} }\:+\:\frac{\mathrm{19}^{\mathrm{2}} {a}}{\mathrm{13}^{\mathrm{3}} }\:−\:…\:\pm\:\frac{\mathrm{19}^{{n}−\mathrm{1}} {a}}{\mathrm{13}^{{n}} },\:{n}\:\in\:\mathbb{N}^{\ast} \\ $$$$ \\ $$$${See}\:{that}\:{the}\:\boldsymbol{{a}}\:{stays}\:{in}\:{the}\:{numerator}\:{for}\:{all}\:{the}\:{sum},\:{so}: \\ $$$$ \\ $$$$\frac{{a}}{\mathrm{13}}\:−\:\frac{\mathrm{19}{a}}{\mathrm{13}^{\mathrm{2}} }\:=\:\frac{\mathrm{13}{a}\:−\:\mathrm{19}{a}}{\mathrm{13}^{\mathrm{2}} }\:=\:−\frac{\mathrm{6}{a}}{\mathrm{13}^{\mathrm{2}} } \\ $$$$−\frac{\mathrm{6}{a}}{\mathrm{13}^{\mathrm{2}} }\:+\:\frac{\mathrm{19}^{\mathrm{2}} {a}}{\mathrm{13}^{\mathrm{3}} }\:=\:\frac{−\mathrm{6}{a}×\mathrm{13}\:+\:\mathrm{19}^{\mathrm{2}} {a}}{\mathrm{13}^{\mathrm{3}} }\:=\:\frac{\mathrm{283}{a}}{\mathrm{13}^{\mathrm{3}} } \\ $$$$ \\ $$$${It}\:{seems}\:{strange}\:{the}\:{way}\:{it}\:{oscilates},\:{but}\:{we}\:{can}\:{say}: \\ $$$$ \\ $$$$\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{19}^{{n}−\mathrm{1}} {a}^{{n}} }{\mathrm{13}^{{n}} {b}^{{n}−\mathrm{1}} }\:=\:\frac{{ab}}{\mathrm{13}{a}\:+\:\mathrm{19}{b}} \\ $$$$\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{19}^{{n}−\mathrm{1}} {a}}{\mathrm{13}^{{n}} }\:=\:\frac{{a}}{\mathrm{32}} \\ $$$$ \\ $$$${if}\:{a}\:=\:{mb},\:{m}\:\in\:\mathbb{Z}^{\ast} : \\ $$$$ \\ $$$$\frac{{mb}^{\mathrm{2}} }{\mathrm{13}{mb}\:+\:\mathrm{19}{b}}\:=\:\frac{{mb}}{\mathrm{13}{m}\:+\:\mathrm{19}} \\ $$$$ \\ $$$${if}\:{b}\:=\:{na},\:{n}\:\in\:\mathbb{Z}^{\ast} : \\ $$$$ \\ $$$$\frac{{a}^{\mathrm{2}} {n}}{\mathrm{13}{a}\:+\:\mathrm{19}{na}}\:=\:\frac{{an}}{\mathrm{19}{n}\:+\:\mathrm{13}} \\ $$$$ \\ $$$${if}\:{a}\:\neq\:{mb},\:{a}\:=\:{mb}\:+\:{r};\:{mb},\:{r}\:\in\:\mathbb{Z}^{\ast} : \\ $$$$ \\ $$$$\frac{\left({mb}\:+\:{r}\right){b}}{\mathrm{13}\left({mb}\:+\:{r}\right)\:+\:\mathrm{19}{b}} \\ $$$$ \\ $$$${if}\:{b}\:\neq\:{na},\:{b}\:=\:{na}\:+\:{r};\:{na},\:{r}\:\in\:\mathbb{Z}^{\ast} : \\ $$$$ \\ $$$$\frac{{a}\left({na}\:+\:{r}\right)}{\mathrm{13}{a}\:+\:\mathrm{19}\left({na}\:+\:{r}\right)} \\ $$$$ \\ $$$${if}\:\exists{k}\:\in\:\mathbb{Z}^{\ast} \:\Rightarrow\:\mathrm{13}{a}\:+\:\mathrm{19}{b}=\:{k}\left({ab}\right), \\ $$$${k}\:=\:\frac{\mathrm{13}{a}\:+\:\mathrm{19}{b}}{{ab}},\:{gcd}\left(\mathrm{13}{a}\:+\:\mathrm{19}{b},\:{ab}\right)\:=\:\mid{ab}\mid, \\ $$$${if}\:{not},\:{gcd}\left(\mathrm{13}{a}\:+\:\mathrm{19}{b},\:{ab}\right)\:=\:\mathrm{1} \\ $$$$ \\ $$$$\frac{\mathrm{13}{a}\:+\:\mathrm{19}{b}}{{ab}}\:=\:\frac{\mathrm{13}}{{b}}\:+\:\frac{\mathrm{19}}{{a}} \\ $$$$ \\ $$$${If}\:{a}\:=\:{b}: \\ $$$$ \\ $$$$\frac{\mathrm{13}\:{a}\:+\:\mathrm{19}\:{a}}{{a}^{\mathrm{2}} }\:=\:\frac{\mathrm{13}\:+\:\mathrm{19}}{{a}}\:=\:\frac{\mathrm{32}}{{a}};\:{here}\:{the}\:{fraction}\:{inverted},\:{and}\:{a}\:=\:\pm\mathrm{1},\:\pm\mathrm{2},\:\pm\mathrm{4},\:\pm\mathrm{8},\:\pm\mathrm{16}\:{or}\:\pm\mathrm{32}\:{to}\:{make}\:\boldsymbol{{k}}\:{a}\:{integer} \\ $$$$ \\ $$$${Maximum}\:{gdc}\:{on}\:{this}\:\boldsymbol{{c}}{ase}\:=\:\mid{a}^{\mathrm{2}} \mid\:=\:\mid\left(\pm\mathrm{32}\right)^{\mathrm{2}} \mid\:=\:\mathrm{1024} \\ $$$$ \\ $$$${Arbitrary}\:{a},{b}\:\in\:\mathbb{Z}^{\ast} \:{gdc};\:{if}\:{a}\:=\:{mb},\:{m}\:\in\:\mathbb{Z}^{\ast} : \\ $$$$ \\ $$$$\frac{\mathrm{13}{kb}\:+\:\mathrm{19}{b}}{{mb}^{\mathrm{2}} }\:=\:\frac{{b}\left(\mathrm{13}{m}\:+\:\mathrm{19}\right)}{{mb}^{\mathrm{2}} }\:=\:\frac{\mathrm{13}{m}\:+\:\mathrm{19}}{{mb}}\:=\:\frac{\mathrm{13}}{{b}}\:+\:\frac{\mathrm{19}}{{mb}} \\ $$$$ \\ $$$${gcd}\:=\:\mid{ab}\mid;\:{a},\:{b}\:{solutions}\:{to}\:{the}\:{above}\:{sum}\:{resulting}\:{in}\:{k}\:\in\:\mathbb{Z}^{\ast} \\ $$$$ \\ $$$${if}\:{b}\:=\:{na},\:{n}\:\in\:\mathbb{Z}^{\ast} : \\ $$$$ \\ $$$$\frac{\mathrm{13}{a}\:+\:\mathrm{19}{na}}{{na}^{\mathrm{2}} }\:=\:\frac{{a}\left(\mathrm{13}\:+\:\mathrm{19}{n}\right)}{{na}^{\mathrm{2}} }\:=\:\frac{\mathrm{13}\:+\:\mathrm{19}{n}}{{na}}\:=\:\frac{\mathrm{19}}{{a}}\:+\:\frac{\mathrm{13}}{{na}} \\ $$$$ \\ $$$${gcd}\:=\:\mid{ab}\mid;\:{a},\:{b}\:{solutions}\:{to}\:{the}\:{above}\:{sum}\:{resulting}\:{in}\:{k}\:\in\:\mathbb{Z}^{\ast} \\ $$$$ \\ $$$${if}\:{a}\:\neq\:{mb},\:{a}\:=\:{mb}\:+\:{r};\:{mb},\:{r}\:\in\:\mathbb{Z}^{\ast} : \\ $$$$ \\ $$$$\frac{\mathrm{13}\left({mb}\:+\:{r}\right)\:+\:\mathrm{19}{b}}{\left({mb}\:+\:{r}\right){b}} \\ $$$$\frac{\mathrm{13}}{{b}}\:+\:\frac{\mathrm{19}}{{mb}\:+\:{r}} \\ $$$$ \\ $$$${if}\:{b}\:\neq\:{na},\:{b}\:=\:{na}\:+\:{r};\:{na},\:{r}\:\in\:\mathbb{Z}^{\ast} : \\ $$$$ \\ $$$$\frac{\mathrm{13}{a}\:+\:\mathrm{19}\left({na}\:+\:{r}\right)}{{a}\left({na}\:+\:{r}\right)} \\ $$$$\frac{\mathrm{19}}{{a}}\:+\:\frac{\mathrm{13}}{{na}\:+\:{r}} \\ $$$$ \\ $$$${all}\:{possible}\:{gcds}\:{when}\:{ab}\:{and}\:\mathrm{13}{a}\:+\:\mathrm{19}{b}\:{are}\:{multiple}\:{of}\:{each}\:{other}: \\ $$$$ \\ $$$${if}\:{ab}\:\geq\:\mathrm{13}{a}\:+\:\mathrm{19}{b}:\:{k}\:=\:\frac{{mb}}{\mathrm{13}{m}\:+\:\mathrm{19}}\:;\:\frac{{na}}{\mathrm{19}{n}\:−\:\mathrm{13}}\:\:{k}\:=\:\frac{{a}}{\mathrm{19}}\:+\:\frac{{na}}{\mathrm{13}}\:;\:\:{k}\:=\:\frac{\left({mb}\:+\:{x}\right){b}}{\mathrm{13}\left({mb}\:+\:{x}\right)\:+\:\mathrm{19}{b}}\:;\:{k}\:=\:\frac{{a}\left({na}\:+\:{x}\right)}{\mathrm{13}{a}\:+\:\mathrm{19}\left({na}\:+\:{x}\right)},\:{with}\:\left({a},\:{b}\:\in\:\mathbb{Z}^{\ast} \right),\:\left({m},\:{n}\:\in\:\mathrm{Q}^{\ast} \right)\:\mathscr{H}\underline{\mathscr{H}}\cancel{\underbrace{ }} \\ $$