Question Number 223405 by behi834171 last updated on 24/Jul/25

Answered by fantastic last updated on 24/Jul/25

$$\sqrt[{\mathrm{3}}]{{x}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\sqrt[{\mathrm{3}}]{{x}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\therefore{x}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${let}\:\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}={u} \\ $$$${So}\:{u}^{\mathrm{3}} ={x}+\mathrm{1} \\ $$$${or}\:{x}={u}^{\mathrm{3}} −\mathrm{1} \\ $$$${So}\:{the}\:{equation}\:{becomes} \\ $$$${u}^{\mathrm{3}} −\mathrm{1}+{u}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${u}\approx\mathrm{0}.\mathrm{73229785062139} \\ $$$${So}\:{x}={u}^{\mathrm{3}} −\mathrm{1}\Rightarrow\approx−\mathrm{0}.\mathrm{60729785062139} \\ $$
Answered by mr W last updated on 24/Jul/25

$${x}+\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}=\frac{\mathrm{9}}{\mathrm{8}} \\ $$$${t}=\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}} \\ $$$${t}^{\mathrm{3}} +{t}−\frac{\mathrm{9}}{\mathrm{8}}=\mathrm{0} \\ $$$${t}=\sqrt[{\mathrm{3}}]{\sqrt{\left(−\frac{\mathrm{9}}{\mathrm{16}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }}+\frac{\mathrm{9}}{\mathrm{16}}}−\sqrt[{\mathrm{3}}]{\sqrt{\left(−\frac{\mathrm{9}}{\mathrm{16}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }}−\frac{\mathrm{9}}{\mathrm{16}}} \\ $$$$\:=\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7329}}}{\mathrm{144}}+\frac{\mathrm{9}}{\mathrm{16}}}−\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7329}}}{\mathrm{144}}−\frac{\mathrm{9}}{\mathrm{16}}} \\ $$$${x}={t}^{\mathrm{3}} −\mathrm{1}=\frac{\mathrm{1}}{\mathrm{8}}−{t} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{8}}−\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7329}}}{\mathrm{144}}+\frac{\mathrm{9}}{\mathrm{16}}}+\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7329}}}{\mathrm{144}}−\frac{\mathrm{9}}{\mathrm{16}}} \\ $$$$\:\:\approx−\mathrm{0}.\mathrm{607298} \\ $$
Commented by fantastic last updated on 24/Jul/25

$${I}\:{think}\:{you}\:{used}\:{Cardano}'{s}\:{Formula}.\:{Right}?? \\ $$
Commented by mr W last updated on 24/Jul/25

$${yes} \\ $$