Menu Close

Question-223490




Question Number 223490 by mr W last updated on 26/Jul/25
Commented by Ghisom last updated on 27/Jul/25
(1/2)a(a+b)−(1/2)a(a−b)=ab=77cm^2
$$\frac{\mathrm{1}}{\mathrm{2}}{a}\left({a}+{b}\right)−\frac{\mathrm{1}}{\mathrm{2}}{a}\left({a}−{b}\right)={ab}=\mathrm{77}{cm}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 27/Jul/25
��
Answered by Raphael254 last updated on 27/Jul/25
  Green area plus imaginary rectangle triangle area = ((x(x+y))/2)  Imaginary rectangle area = ((x(x−y))/2)  Green area = ((x(x+y))/2) − ((x(x−y))/2) = ((x^2  + xy −x^2  + xy)/2) = ((2xy)/2) = xy = 77 cm^2
$$ \\ $$$${Green}\:{area}\:{plus}\:{imaginary}\:{rectangle}\:{triangle}\:{area}\:=\:\frac{{x}\left({x}+{y}\right)}{\mathrm{2}} \\ $$$${Imaginary}\:{rectangle}\:{area}\:=\:\frac{{x}\left({x}−{y}\right)}{\mathrm{2}} \\ $$$${Green}\:{area}\:=\:\frac{{x}\left({x}+{y}\right)}{\mathrm{2}}\:−\:\frac{{x}\left({x}−{y}\right)}{\mathrm{2}}\:=\:\frac{{x}^{\mathrm{2}} \:+\:{xy}\:−{x}^{\mathrm{2}} \:+\:{xy}}{\mathrm{2}}\:=\:\frac{\mathrm{2}{xy}}{\mathrm{2}}\:=\:{xy}\:=\:\mathrm{77}\:{cm}^{\mathrm{2}} \\ $$$$ \\ $$
Commented by Raphael254 last updated on 27/Jul/25
Commented by mr W last updated on 27/Jul/25
��
Commented by fantastic last updated on 27/Jul/25
How did you make this  ?? please tell me
$${How}\:{did}\:{you}\:{make}\:{this} \\ $$$$??\:{please}\:{tell}\:{me} \\ $$$$ \\ $$
Answered by som(math1967) last updated on 27/Jul/25
Commented by som(math1967) last updated on 27/Jul/25
Area of △ABD=(1/2)×77cm^2   Area of△ BCD=(1/2)×77cm^2   Green shaded area  =((77)/2)+((77)/2)=77cm^2
$${Area}\:{of}\:\bigtriangleup{ABD}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{77}{cm}^{\mathrm{2}} \\ $$$${Area}\:{of}\bigtriangleup\:{BCD}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{77}{cm}^{\mathrm{2}} \\ $$$${Green}\:{shaded}\:{area} \\ $$$$=\frac{\mathrm{77}}{\mathrm{2}}+\frac{\mathrm{77}}{\mathrm{2}}=\mathrm{77}{cm}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 27/Jul/25
��

Leave a Reply

Your email address will not be published. Required fields are marked *