Menu Close

Question-223544




Question Number 223544 by ajfour last updated on 29/Jul/25
Commented by ajfour last updated on 29/Jul/25
If 2Rθ=2πr, find R/r for h=0.
$${If}\:\mathrm{2}{R}\theta=\mathrm{2}\pi{r},\:{find}\:{R}/{r}\:{for}\:{h}=\mathrm{0}. \\ $$
Answered by mr W last updated on 29/Jul/25
θR=πr  (R+r)cos θ=(R+h−r)  (1+(r/R))cos ((πr)/R)=(1+(h/R)−(r/R))  with h=0:  ⇒cos ((πr)/R)=((1−(r/R))/(1+(r/R))) ⇒(r/R)=(1/3)
$$\theta{R}=\pi{r} \\ $$$$\left({R}+{r}\right)\mathrm{cos}\:\theta=\left({R}+{h}−{r}\right) \\ $$$$\left(\mathrm{1}+\frac{{r}}{{R}}\right)\mathrm{cos}\:\frac{\pi{r}}{{R}}=\left(\mathrm{1}+\frac{{h}}{{R}}−\frac{{r}}{{R}}\right) \\ $$$${with}\:{h}=\mathrm{0}: \\ $$$$\Rightarrow\mathrm{cos}\:\frac{\pi{r}}{{R}}=\frac{\mathrm{1}−\frac{{r}}{{R}}}{\mathrm{1}+\frac{{r}}{{R}}}\:\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by ajfour last updated on 29/Jul/25
Commented by mr W last updated on 29/Jul/25
2θR=2πr doesn′t mean:
$$\mathrm{2}\theta{R}=\mathrm{2}\pi{r}\:{doesn}'{t}\:{mean}: \\ $$
Commented by mr W last updated on 29/Jul/25
Commented by ajfour last updated on 29/Jul/25
yes sir, i cant really impose  further condition πr=Rθ  Thanks!
$${yes}\:{sir},\:{i}\:{cant}\:{really}\:{impose} \\ $$$${further}\:{condition}\:\pi{r}={R}\theta \\ $$$${Thanks}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *