Question Number 223591 by Tawa11 last updated on 31/Jul/25

Commented by ajfour last updated on 31/Jul/25

$${Very}\:{nice}\:{Question}! \\ $$
Commented by Tawa11 last updated on 31/Jul/25

$$\mathrm{Really}? \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 01/Aug/25

$${have}\:{you}\:{tried}\:{by}\:{yourself}\:{and}\:{what} \\ $$$${did}\:{you}\:{get}? \\ $$
Commented by mahdipoor last updated on 01/Aug/25

$${i}\:{get}\:\mathrm{2467}\:{N} \\ $$
Commented by Tawa11 last updated on 01/Aug/25

$$\mathrm{No}\:\mathrm{sir}.\: \\ $$$$\mathrm{Textbook}\:\mathrm{answer}\:\mathrm{says}\:\:\:\mathrm{1730}.\mathrm{5N} \\ $$
Commented by ajfour last updated on 01/Aug/25

$$ \\ $$$${N}\mathrm{sin}\:\alpha−\mu{N}\mathrm{cos}\:\alpha={f}\left(=\mu{R}\right) \\ $$$${N}\mathrm{cos}\:\alpha+\mu{N}\mathrm{sin}\:\alpha+{mg}={R} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({normal}\:{from}\:{ground}\right) \\ $$$${dividing} \\ $$$$\frac{\mathrm{tan}\:\alpha−\mu}{\mathrm{1}+\mu\mathrm{tan}\:\alpha+\frac{{mg}}{{N}\mathrm{cos}\:\alpha}}=\mu\:\:\:\:\:…\left({i}\right) \\ $$$${Mg}\left({L}/\mathrm{2}\right)\mathrm{cos}\:\alpha={N}\left({H}/\mathrm{sin}\:\alpha\right) \\ $$$${N}=\frac{\left(\cancel{\mathrm{100}}\:\overset{\mathrm{5}} {\:}{g}\right)\cancel{\mathrm{15}}\overset{\mathrm{3}} {\:}×\mathrm{3}×\cancel{\mathrm{4}}}{\cancel{\mathrm{4}×\mathrm{5}}×\cancel{\mathrm{4}}×\cancel{\mathrm{5}}}=\mathrm{45}{g} \\ $$$${mg}={N}\mathrm{cos}\:\alpha\left\{\frac{\mathrm{tan}\:\alpha}{\mu}−\mathrm{1}−\mathrm{1}−\mu\mathrm{tan}\:\alpha\right\} \\ $$$$\:\:\:\:{w}=\mathrm{45}{g}×\frac{\mathrm{3}}{\mathrm{5}}\left\{\frac{\mathrm{4}×\mathrm{5}}{\mathrm{3}}−\mathrm{2}−\frac{\mathrm{4}}{\mathrm{5}×\mathrm{5}}\right\} \\ $$$$\:\:{w}=\mathrm{27}{g}\left(\frac{\mathrm{338}}{\mathrm{75}}\right)=\mathrm{1192}.\mathrm{5}\:{newtons} \\ $$$$\:\:{g}=\mathrm{9}.\mathrm{8}{m}/{s}^{\mathrm{2}} \\ $$
Commented by ajfour last updated on 01/Aug/25

Commented by mr W last updated on 01/Aug/25

$${Very}\:{nice}\:{Question}! \\ $$$${i}\:{also}\:{think}. \\ $$
Commented by mr W last updated on 01/Aug/25

$${ajfour}\:{sir}:\: \\ $$$${what}'{s}\:{your}\:{solution}/{answer}? \\ $$
Commented by mr W last updated on 02/Aug/25

$${i}\:{guess}\:{your}\:{solution}\:{has}\:{only}\: \\ $$$${considered}\:{that}\:{the}\:{block}\:{doesn}'{t} \\ $$$${slide}\:\left({no}\:{slipping}\right).\:{this}\:{is}\:{ok}, \\ $$$${only}\:{if}\:{the}\:{block}\:{has}\:{large}\:{enough} \\ $$$${size}\:{such}\:{as}\:{like}\:{following}: \\ $$
Commented by mr W last updated on 02/Aug/25

Commented by mr W last updated on 02/Aug/25

$${in}\:{current}\:{case}\:{the}\:{size}\:{of}\:{the}\:{block} \\ $$$${is}\:{limited}.\:{we}\:{must}\:{also}\:{ensure}\:{that} \\ $$$${the}\:{block}\:{doesn}'{t}\:{rotate}\:\left({no}\:{tipping}\right). \\ $$$${considering}\:{this}\:{the}\:{block}\:{may}\:{need} \\ $$$${a}\:{larger}\:{weight}. \\ $$
Answered by mr W last updated on 02/Aug/25

Commented by mr W last updated on 02/Aug/25

$${the}\:{rod}\:{can}\:{only}\:{rotate}\:{about}\:{point}\:{A}. \\ $$$${the}\:{block}\:{can}\:{both}\:{slide}\:{and}\:{rotate} \\ $$$${in}\:{the}\:{tendency}\:{as}\:{shown}.\:{we}\:{must} \\ $$$${ensure}\:{that}\:{the}\:{block}\:{has}\:{no}\:{slipping} \\ $$$$\underline{{and}}\:{no}\:{tipping}. \\ $$
Commented by mr W last updated on 04/Aug/25

Commented by mr W last updated on 02/Aug/25
![tan φ=μ=0.2 tan θ=(4/3) ((0.5)/(tan α))+((0.5)/(tan (θ−β)))=4 ⇒tan α=(1/(8−(1/(tan (θ−β))))) for β=φ: tan α=(1/(8−((19)/(17))))=((17)/(117)) <0.2 ✓ ((1.25×sin ((π/2)+β))/(sin (θ−β)))=((3.75×sin ((π/2)−ϕ−θ))/(sin ϕ))=SG ((cos β)/(sin (θ−β)))=((3 cos (θ+ϕ))/(sin ϕ)) ⇒tan ϕ=((cos θ)/(((cos β)/(3 sin (θ−β)))+sin θ)) =((cos θ)/((1/(3(sin θ−cos θ tan β)))+sin θ)) for β=φ: tan ϕ=((0.6)/((1/(3(0.8−0.6×0.2)))+0.8))=((153)/(329)) ((mg sin ϕ)/(sin (θ−β+ϕ)))=((Mg sin α)/(sin (θ−β−α)))=R_3 ⇒(M/m)=((sin ϕ sin (θ−β−α))/(sin α sin (θ−β+ϕ))) =((sin ϕ[ sin (θ−β) cos α−cos (θ−β) sin α])/(sin α[sin (θ−β) cos ϕ+cos (θ−β) sin ϕ])) =((((tan (θ−β))/(tan α))−1)/(((tan (θ−β))/(tan ϕ))+1)) for β=φ: tan (θ−β)=((tan θ−tan β)/(1+tan θ tan β))=(((4/3)−0.2)/(1+(4/3)×0.2))=((17)/(19)) since β≤φ, (M/m) is minimum at β=φ: ((M/m))_(min) =((((17)/(19))×((117)/(17))−1)/(((17)/(19))×((329)/(153))+1))=((441)/(250))=1.764 i.e. (Mg)_(min) =1.764 mg =1.764×100×9.81≈1730.5 N ✓](https://www.tinkutara.com/question/Q223683.png)
$$\mathrm{tan}\:\phi=\mu=\mathrm{0}.\mathrm{2} \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\frac{\mathrm{0}.\mathrm{5}}{\mathrm{tan}\:\alpha}+\frac{\mathrm{0}.\mathrm{5}}{\mathrm{tan}\:\left(\theta−\beta\right)}=\mathrm{4} \\ $$$$\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\mathrm{8}−\frac{\mathrm{1}}{\mathrm{tan}\:\left(\theta−\beta\right)}} \\ $$$${for}\:\beta=\phi:\: \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\mathrm{8}−\frac{\mathrm{19}}{\mathrm{17}}}=\frac{\mathrm{17}}{\mathrm{117}}\:<\mathrm{0}.\mathrm{2}\:\checkmark \\ $$$$\frac{\mathrm{1}.\mathrm{25}×\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}+\beta\right)}{\mathrm{sin}\:\left(\theta−\beta\right)}=\frac{\mathrm{3}.\mathrm{75}×\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\varphi−\theta\right)}{\mathrm{sin}\:\varphi}={SG} \\ $$$$\frac{\mathrm{cos}\:\beta}{\mathrm{sin}\:\left(\theta−\beta\right)}=\frac{\mathrm{3}\:\mathrm{cos}\:\left(\theta+\varphi\right)}{\mathrm{sin}\:\varphi} \\ $$$$\Rightarrow\mathrm{tan}\:\varphi=\frac{\mathrm{cos}\:\theta}{\frac{\mathrm{cos}\:\beta}{\mathrm{3}\:\mathrm{sin}\:\left(\theta−\beta\right)}+\mathrm{sin}\:\theta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{cos}\:\theta}{\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\:\mathrm{tan}\:\beta\right)}+\mathrm{sin}\:\theta} \\ $$$${for}\:\beta=\phi: \\ $$$$\mathrm{tan}\:\varphi=\frac{\mathrm{0}.\mathrm{6}}{\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{0}.\mathrm{8}−\mathrm{0}.\mathrm{6}×\mathrm{0}.\mathrm{2}\right)}+\mathrm{0}.\mathrm{8}}=\frac{\mathrm{153}}{\mathrm{329}} \\ $$$$ \\ $$$$\frac{{mg}\:\mathrm{sin}\:\varphi}{\mathrm{sin}\:\left(\theta−\beta+\varphi\right)}=\frac{{Mg}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\theta−\beta−\alpha\right)}={R}_{\mathrm{3}} \\ $$$$\Rightarrow\frac{{M}}{{m}}=\frac{\mathrm{sin}\:\varphi\:\mathrm{sin}\:\left(\theta−\beta−\alpha\right)}{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\left(\theta−\beta+\varphi\right)} \\ $$$$\:\:\:\:\:=\frac{\mathrm{sin}\:\varphi\left[\:\mathrm{sin}\:\left(\theta−\beta\right)\:\mathrm{cos}\:\alpha−\mathrm{cos}\:\left(\theta−\beta\right)\:\mathrm{sin}\:\alpha\right]}{\mathrm{sin}\:\alpha\left[\mathrm{sin}\:\left(\theta−\beta\right)\:\mathrm{cos}\:\varphi+\mathrm{cos}\:\left(\theta−\beta\right)\:\mathrm{sin}\:\varphi\right]} \\ $$$$\:\:\:\:\:=\frac{\frac{\mathrm{tan}\:\left(\theta−\beta\right)}{\mathrm{tan}\:\alpha}−\mathrm{1}}{\frac{\mathrm{tan}\:\left(\theta−\beta\right)}{\mathrm{tan}\:\varphi}+\mathrm{1}} \\ $$$${for}\:\beta=\phi: \\ $$$$\mathrm{tan}\:\left(\theta−\beta\right)=\frac{\mathrm{tan}\:\theta−\mathrm{tan}\:\beta}{\mathrm{1}+\mathrm{tan}\:\theta\:\mathrm{tan}\:\beta}=\frac{\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{0}.\mathrm{2}}{\mathrm{1}+\frac{\mathrm{4}}{\mathrm{3}}×\mathrm{0}.\mathrm{2}}=\frac{\mathrm{17}}{\mathrm{19}} \\ $$$${since}\:\beta\leqslant\phi,\:\frac{{M}}{{m}}\:{is}\:{minimum}\:{at}\:\beta=\phi: \\ $$$$\left(\frac{{M}}{{m}}\right)_{{min}} =\frac{\frac{\mathrm{17}}{\mathrm{19}}×\frac{\mathrm{117}}{\mathrm{17}}−\mathrm{1}}{\frac{\mathrm{17}}{\mathrm{19}}×\frac{\mathrm{329}}{\mathrm{153}}+\mathrm{1}}=\frac{\mathrm{441}}{\mathrm{250}}=\mathrm{1}.\mathrm{764} \\ $$$${i}.{e}. \\ $$$$\left({Mg}\right)_{{min}} =\mathrm{1}.\mathrm{764}\:{mg} \\ $$$$\:\:\:\:\:\:\:=\mathrm{1}.\mathrm{764}×\mathrm{100}×\mathrm{9}.\mathrm{81}\approx\mathrm{1730}.\mathrm{5}\:{N}\:\checkmark \\ $$
Commented by mr W last updated on 02/Aug/25

$${as}\:{usual}\:{i}\:{preferred}\:{again}\:{a}\:{pure}\: \\ $$$${geometrical}\:{path}. \\ $$
Commented by ajfour last updated on 02/Aug/25

$${wow}!\:{congratulations}!\:{I}\:{was}\:{next} \\ $$$${going}\:{to}\:{consider}\:{this}\:{csse}\:{too}… \\ $$
Commented by Tawa11 last updated on 02/Aug/25

$$\mathrm{Wow},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$