Menu Close

Question-223741




Question Number 223741 by mr W last updated on 04/Aug/25
Commented by mr W last updated on 03/Aug/25
as Q223720, but the question is:  after what time will the mass M   hit the wall?
$${as}\:{Q}\mathrm{223720},\:{but}\:{the}\:{question}\:{is}: \\ $$$$\underline{{after}\:{what}\:{time}}\:{will}\:{the}\:{mass}\:{M}\: \\ $$$${hit}\:{the}\:{wall}? \\ $$
Answered by fantastic last updated on 03/Aug/25
Im writing what is written in the book      After releasing mass m   the mass M will come down  and will hit the ground   with the speed of v(let)  now right before hitting the wall   the direction   of the speed  of M will be horizontal.  that time rope from M to the pully   makes angle θ(let)  ∴ that time speed of m=vcos θ  the  mass m will go upwards h(let)  here E_p  of M will decrease   but E_k  will increase.  The E_p  and E_k  of m will both increase  lets  assume that    the length of rope from pully to mass m is x  So 2+x=1+(√5)+x−h  or h=((√5)−1)m  decrease of E_p  of mass M=2g×1=2g  increase of E_k  of mass M=(1/2)×2×v^2 =v^2   increase of E_k  of mass m  =(1/2)×0.5×v^2 cos^2 θ=(v^2 /5)[∵cos θ=(2/( (√5)))]  increase of E_p  of  mass m=0.5×g((√5)−1)  from conservation of energy  2g=v^2 +0.5×g((√5)−1)+(v^2 /5)  or 2×9.8=(6/5)v^2 +(1/2)((√5)−1)×9.8  or  (6/5)v^2 =9.8[2−((((√5)−1))/2)]  v^2 =((9.8×5)/6)[((5−(√5))/2)]  So v≈11.3 m/s
$${Im}\:{writing}\:{what}\:{is}\:{written}\:{in}\:{the}\:{book} \\ $$$$\:\: \\ $$$${After}\:{releasing}\:{mass}\:{m} \\ $$$$\:{the}\:{mass}\:{M}\:{will}\:{come}\:{down} \\ $$$${and}\:{will}\:{hit}\:{the}\:{ground} \\ $$$$\:{with}\:{the}\:{speed}\:{of}\:{v}\left({let}\right) \\ $$$${now}\:{right}\:{before}\:{hitting}\:{the}\:{wall} \\ $$$$\:{the}\:{direction}\: \\ $$$${of}\:{the}\:{speed}\:\:{of}\:{M}\:{will}\:{be}\:{horizontal}. \\ $$$${that}\:{time}\:{rope}\:{from}\:{M}\:{to}\:{the}\:{pully} \\ $$$$\:{makes}\:{angle}\:\theta\left({let}\right) \\ $$$$\therefore\:{that}\:{time}\:{speed}\:{of}\:{m}={v}\mathrm{cos}\:\theta \\ $$$${the}\:\:{mass}\:{m}\:{will}\:{go}\:{upwards}\:{h}\left({let}\right) \\ $$$${here}\:{E}_{{p}} \:{of}\:{M}\:{will}\:{decrease}\: \\ $$$${but}\:{E}_{{k}} \:{will}\:{increase}. \\ $$$${The}\:{E}_{{p}} \:{and}\:{E}_{{k}} \:{of}\:{m}\:{will}\:{both}\:{increase} \\ $$$${lets}\:\:{assume}\:{that}\:\: \\ $$$${the}\:{length}\:{of}\:{rope}\:{from}\:{pully}\:{to}\:{mass}\:{m}\:{is}\:{x} \\ $$$${So}\:\mathrm{2}+{x}=\mathrm{1}+\sqrt{\mathrm{5}}+{x}−{h} \\ $$$${or}\:{h}=\left(\sqrt{\mathrm{5}}−\mathrm{1}\right){m} \\ $$$${decrease}\:{of}\:{E}_{{p}} \:{of}\:{mass}\:{M}=\mathrm{2}{g}×\mathrm{1}=\mathrm{2}{g} \\ $$$${increase}\:{of}\:{E}_{{k}} \:{of}\:{mass}\:{M}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×{v}^{\mathrm{2}} ={v}^{\mathrm{2}} \\ $$$${increase}\:{of}\:{E}_{{k}} \:{of}\:{mass}\:{m} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{0}.\mathrm{5}×{v}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta=\frac{{v}^{\mathrm{2}} }{\mathrm{5}}\left[\because\mathrm{cos}\:\theta=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\right] \\ $$$${increase}\:{of}\:{E}_{{p}} \:{of}\:\:{mass}\:{m}=\mathrm{0}.\mathrm{5}×{g}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right) \\ $$$${from}\:{conservation}\:{of}\:{energy} \\ $$$$\mathrm{2}{g}={v}^{\mathrm{2}} +\mathrm{0}.\mathrm{5}×{g}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)+\frac{{v}^{\mathrm{2}} }{\mathrm{5}} \\ $$$${or}\:\mathrm{2}×\mathrm{9}.\mathrm{8}=\frac{\mathrm{6}}{\mathrm{5}}{v}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)×\mathrm{9}.\mathrm{8} \\ $$$${or}\:\:\frac{\mathrm{6}}{\mathrm{5}}{v}^{\mathrm{2}} =\mathrm{9}.\mathrm{8}\left[\mathrm{2}−\frac{\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\mathrm{2}}\right] \\ $$$${v}^{\mathrm{2}} =\frac{\mathrm{9}.\mathrm{8}×\mathrm{5}}{\mathrm{6}}\left[\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right] \\ $$$${So}\:{v}\approx\mathrm{11}.\mathrm{3}\:{m}/{s} \\ $$
Commented by mr W last updated on 03/Aug/25
this is correct. that means  v=(√((9.8×5×(5−(√5)))/(12)))≈3.36 m/s  it′s what i also got.
$${this}\:{is}\:{correct}.\:{that}\:{means} \\ $$$${v}=\sqrt{\frac{\mathrm{9}.\mathrm{8}×\mathrm{5}×\left(\mathrm{5}−\sqrt{\mathrm{5}}\right)}{\mathrm{12}}}\approx\mathrm{3}.\mathrm{36}\:{m}/{s} \\ $$$${it}'{s}\:{what}\:{i}\:{also}\:{got}. \\ $$
Commented by fantastic last updated on 03/Aug/25
you want to see what they did?
$${you}\:{want}\:{to}\:{see}\:{what}\:{they}\:{did}? \\ $$
Commented by fantastic last updated on 03/Aug/25
Commented by fantastic last updated on 03/Aug/25
:(
$$:\left(\right. \\ $$
Commented by mr W last updated on 04/Aug/25
i see.   they mistook v^2  as answer for v.  i have changed the question to ask  the time which the mass M takes  to hit the wall. if you like, give a try!
$${i}\:{see}.\: \\ $$$${they}\:{mistook}\:{v}^{\mathrm{2}} \:{as}\:{answer}\:{for}\:{v}. \\ $$$${i}\:{have}\:{changed}\:{the}\:{question}\:{to}\:{ask} \\ $$$${the}\:{time}\:{which}\:{the}\:{mass}\:{M}\:{takes} \\ $$$${to}\:{hit}\:{the}\:{wall}.\:{if}\:{you}\:{like},\:{give}\:{a}\:{try}! \\ $$
Commented by fantastic last updated on 03/Aug/25
sorry. I have exams after 5 or 6  days. I will be a lot more inactive  in this app.I have to focus  in my studies these days.  however i will give it a try.
$${sorry}.\:{I}\:{have}\:{exams}\:{after}\:\mathrm{5}\:{or}\:\mathrm{6} \\ $$$${days}.\:{I}\:{will}\:{be}\:{a}\:{lot}\:{more}\:{inactive} \\ $$$${in}\:{this}\:{app}.{I}\:{have}\:{to}\:{focus} \\ $$$${in}\:{my}\:{studies}\:{these}\:{days}. \\ $$$${however}\:{i}\:{will}\:{give}\:{it}\:{a}\:{try}. \\ $$$$ \\ $$
Commented by fantastic last updated on 03/Aug/25
I request you whenever i  give any physics question  please explain it in breif.  Otherwise my microscopic  brain will not understand
$${I}\:{request}\:{you}\:{whenever}\:{i} \\ $$$${give}\:{any}\:{physics}\:{question} \\ $$$${please}\:{explain}\:{it}\:{in}\:{breif}. \\ $$$${Otherwise}\:{my}\:{microscopic} \\ $$$${brain}\:{will}\:{not}\:{understand} \\ $$$$ \\ $$
Commented by fantastic last updated on 03/Aug/25
Sir can you please expplain me how  velocity of m=vcos θ  I understand other things well
$${Sir}\:{can}\:{you}\:{please}\:{expplain}\:{me}\:{how} \\ $$$${velocity}\:{of}\:{m}={v}\mathrm{cos}\:\theta \\ $$$${I}\:{understand}\:{other}\:{things}\:{well} \\ $$
Commented by mr W last updated on 03/Aug/25
in basic physics we assume that  such a string (rope) is not stretchable.  that means in axial direction of  the string, any two points must   have the same displacement, thus  also the same velocity and the same  acceleration. in following picture:  d_1  cos α_1 =d_2  cos α_2   v_1  cos α_1 =v_2  cos α_2   a_1  cos α_1 =a_2  cos α_2
$${in}\:{basic}\:{physics}\:{we}\:{assume}\:{that} \\ $$$${such}\:{a}\:{string}\:\left({rope}\right)\:{is}\:{not}\:{stretchable}. \\ $$$${that}\:{means}\:{in}\:{axial}\:{direction}\:{of} \\ $$$${the}\:{string},\:{any}\:{two}\:{points}\:{must}\: \\ $$$${have}\:{the}\:{same}\:{displacement},\:{thus} \\ $$$${also}\:{the}\:{same}\:{velocity}\:{and}\:{the}\:{same} \\ $$$${acceleration}.\:{in}\:{following}\:{picture}: \\ $$$${d}_{\mathrm{1}} \:\mathrm{cos}\:\alpha_{\mathrm{1}} ={d}_{\mathrm{2}} \:\mathrm{cos}\:\alpha_{\mathrm{2}} \\ $$$${v}_{\mathrm{1}} \:\mathrm{cos}\:\alpha_{\mathrm{1}} ={v}_{\mathrm{2}} \:\mathrm{cos}\:\alpha_{\mathrm{2}} \\ $$$${a}_{\mathrm{1}} \:\mathrm{cos}\:\alpha_{\mathrm{1}} ={a}_{\mathrm{2}} \:\mathrm{cos}\:\alpha_{\mathrm{2}} \\ $$
Commented by mr W last updated on 03/Aug/25
Commented by mr W last updated on 03/Aug/25
Commented by mr W last updated on 03/Aug/25
in current case that means:  v_1 cos θ =v_2 =v_3
$${in}\:{current}\:{case}\:{that}\:{means}: \\ $$$$\mathrm{v}_{\mathrm{1}} \mathrm{cos}\:\theta\:=\mathrm{v}_{\mathrm{2}} =\mathrm{v}_{\mathrm{3}} \\ $$
Commented by fantastic last updated on 03/Aug/25
thanks sir.
$${thanks}\:{sir}. \\ $$
Commented by fantastic last updated on 03/Aug/25
Wait.Sir do you understand  the language after (√5) ,2,1??
$${Wait}.{Sir}\:{do}\:{you}\:{understand} \\ $$$${the}\:{language}\:{after}\:\sqrt{\mathrm{5}}\:,\mathrm{2},\mathrm{1}?? \\ $$
Commented by mr W last updated on 03/Aug/25
no, i don′t understand Bengali. why?
$${no},\:{i}\:{don}'{t}\:{understand}\:{Bengali}.\:{why}? \\ $$
Commented by fantastic last updated on 04/Aug/25
I was curious
$${I}\:{was}\:{curious} \\ $$
Answered by mr W last updated on 04/Aug/25
Commented by mr W last updated on 06/Aug/25
u=(dφ/dt)  tan ϕ=((sin φ)/(2−cos φ))  x=((sin φ)/(sin ϕ))−1  v=u cos ((π/2)−φ−ϕ)=u sin (φ+ϕ)     =u (sin φ cos ϕ+cos φ sin ϕ)     =((u[sin φ (2−cos φ)+cos φ sin φ])/( (√(sin^2  φ+(2−cos φ)^2 ))))     =((2u sin φ)/( (√(5−4 cos φ))))  ((Mu^2 )/2)+((mv^2 )/2)=Mg sin φ−mg x  ((2u^2 (6−4 cos φ−cos^2  φ))/(5−4 cos φ))=g(1+4 sin φ−(√(5−4 cos φ)))  u^2 =((g(5−4 cos φ)(1+4 sin φ−(√(5−4 cos φ))))/(2(6−4 cos φ−cos^2  φ)))  (dφ/dt)=u=(√((g(5−4 cos φ)(1+4 sin φ−(√(5−4 cos φ))))/(2(6−4 cos φ−cos^2  φ))))  t_1 =∫_0 ^(π/2) (√((2(6−4 cos φ−cos^2  φ))/(g(5−4 cos φ)(1+4 sin φ−(√(5−4 cos φ)))))) dφ     =0.67092204 s     > 0.592 s (see below)   this is reasonable, since the mass m  brakes the mass M.
$${u}=\frac{{d}\phi}{{dt}} \\ $$$$\mathrm{tan}\:\varphi=\frac{\mathrm{sin}\:\phi}{\mathrm{2}−\mathrm{cos}\:\phi} \\ $$$${x}=\frac{\mathrm{sin}\:\phi}{\mathrm{sin}\:\varphi}−\mathrm{1} \\ $$$${v}={u}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\phi−\varphi\right)={u}\:\mathrm{sin}\:\left(\phi+\varphi\right) \\ $$$$\:\:\:={u}\:\left(\mathrm{sin}\:\phi\:\mathrm{cos}\:\varphi+\mathrm{cos}\:\phi\:\mathrm{sin}\:\varphi\right) \\ $$$$\:\:\:=\frac{{u}\left[\mathrm{sin}\:\phi\:\left(\mathrm{2}−\mathrm{cos}\:\phi\right)+\mathrm{cos}\:\phi\:\mathrm{sin}\:\phi\right]}{\:\sqrt{\mathrm{sin}^{\mathrm{2}} \:\phi+\left(\mathrm{2}−\mathrm{cos}\:\phi\right)^{\mathrm{2}} }} \\ $$$$\:\:\:=\frac{\mathrm{2}{u}\:\mathrm{sin}\:\phi}{\:\sqrt{\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi}} \\ $$$$\frac{{Mu}^{\mathrm{2}} }{\mathrm{2}}+\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}={Mg}\:\mathrm{sin}\:\phi−{mg}\:{x} \\ $$$$\frac{\mathrm{2}{u}^{\mathrm{2}} \left(\mathrm{6}−\mathrm{4}\:\mathrm{cos}\:\phi−\mathrm{cos}^{\mathrm{2}} \:\phi\right)}{\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi}={g}\left(\mathrm{1}+\mathrm{4}\:\mathrm{sin}\:\phi−\sqrt{\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi}\right) \\ $$$${u}^{\mathrm{2}} =\frac{{g}\left(\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi\right)\left(\mathrm{1}+\mathrm{4}\:\mathrm{sin}\:\phi−\sqrt{\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi}\right)}{\mathrm{2}\left(\mathrm{6}−\mathrm{4}\:\mathrm{cos}\:\phi−\mathrm{cos}^{\mathrm{2}} \:\phi\right)} \\ $$$$\frac{{d}\phi}{{dt}}={u}=\sqrt{\frac{{g}\left(\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi\right)\left(\mathrm{1}+\mathrm{4}\:\mathrm{sin}\:\phi−\sqrt{\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi}\right)}{\mathrm{2}\left(\mathrm{6}−\mathrm{4}\:\mathrm{cos}\:\phi−\mathrm{cos}^{\mathrm{2}} \:\phi\right)}} \\ $$$${t}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{2}\left(\mathrm{6}−\mathrm{4}\:\mathrm{cos}\:\phi−\mathrm{cos}^{\mathrm{2}} \:\phi\right)}{{g}\left(\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi\right)\left(\mathrm{1}+\mathrm{4}\:\mathrm{sin}\:\phi−\sqrt{\mathrm{5}−\mathrm{4}\:\mathrm{cos}\:\phi}\right)}}\:{d}\phi \\ $$$$\:\:\:=\mathrm{0}.\mathrm{67092204}\:{s} \\ $$$$\:\:\:>\:\mathrm{0}.\mathrm{592}\:{s}\:\left({see}\:{below}\right)\: \\ $$$${this}\:{is}\:{reasonable},\:{since}\:{the}\:{mass}\:{m} \\ $$$${brakes}\:{the}\:{mass}\:{M}. \\ $$
Commented by fantastic last updated on 05/Aug/25
wow sir
$${wow}\:{sir} \\ $$
Commented by mr W last updated on 06/Aug/25
Commented by mr W last updated on 06/Aug/25
u=R(dφ/dt)  ((mu^2 )/2)=mgRsin φ  u=R(dφ/dt)=(√(2gR sin φ))  (dφ/dt)=(√(((2g)/R) sin φ))  t_1 =(√(R/g))∫_0 ^(π/2) (dφ/( (√(2 sin φ))))≈1.854075(√(R/g))  with R=1:  t_1 ≈0.592 s
$${u}={R}\frac{{d}\phi}{{dt}} \\ $$$$\frac{{mu}^{\mathrm{2}} }{\mathrm{2}}={mgR}\mathrm{sin}\:\phi \\ $$$${u}={R}\frac{{d}\phi}{{dt}}=\sqrt{\mathrm{2}{gR}\:\mathrm{sin}\:\phi} \\ $$$$\frac{{d}\phi}{{dt}}=\sqrt{\frac{\mathrm{2}{g}}{{R}}\:\mathrm{sin}\:\phi} \\ $$$${t}_{\mathrm{1}} =\sqrt{\frac{{R}}{{g}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{d}\phi}{\:\sqrt{\mathrm{2}\:\mathrm{sin}\:\phi}}\approx\mathrm{1}.\mathrm{854075}\sqrt{\frac{{R}}{{g}}} \\ $$$${with}\:{R}=\mathrm{1}: \\ $$$${t}_{\mathrm{1}} \approx\mathrm{0}.\mathrm{592}\:{s} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *