Menu Close

sorry-i-mean-p-h-P-prime-set-lim-h-p-h-1-p-h-




Question Number 223801 by wewji12 last updated on 05/Aug/25
sorry  i mean p_h ∈P (prime set)  lim_(h→∞)  (p_(h+1) /p_h )=??
$$\mathrm{sorry}\:\:\mathrm{i}\:\mathrm{mean}\:{p}_{{h}} \in\mathbb{P}\:\left(\mathrm{prime}\:\mathrm{set}\right) \\ $$$$\underset{{h}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}_{{h}+\mathrm{1}} }{{p}_{{h}} }=?? \\ $$
Commented by Ghisom last updated on 05/Aug/25
we know the gaps between primes are  getting larger ⇒^?  (p_(h+1) /p_h ) →+∞  but we don′t know there are infinite twin  primes (p_k , q_k =p_k +2). if so, (q_k /p_k ) → 1  ⇒  we cannot answer the question
$$\mathrm{we}\:\mathrm{know}\:\mathrm{the}\:\mathrm{gaps}\:\mathrm{between}\:\mathrm{primes}\:\mathrm{are} \\ $$$$\mathrm{getting}\:\mathrm{larger}\:\overset{?} {\Rightarrow}\:\frac{{p}_{{h}+\mathrm{1}} }{{p}_{{h}} }\:\rightarrow+\infty \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{there}\:\mathrm{are}\:\mathrm{infinite}\:\mathrm{twin} \\ $$$$\mathrm{primes}\:\left({p}_{{k}} ,\:{q}_{{k}} ={p}_{{k}} +\mathrm{2}\right).\:\mathrm{if}\:\mathrm{so},\:\frac{{q}_{{k}} }{{p}_{{k}} }\:\rightarrow\:\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{we}\:\mathrm{cannot}\:\mathrm{answer}\:\mathrm{the}\:\mathrm{question} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *