Question Number 223851 by Tawa11 last updated on 06/Aug/25

Answered by mr W last updated on 07/Aug/25

Commented by mr W last updated on 08/Aug/25

$${geometry}\:{expressions} \\ $$
Commented by mr W last updated on 07/Aug/25

$$\left(\mathrm{6}+{r}\right)^{\mathrm{2}} =\mathrm{10}^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{16}}{\mathrm{3}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{10}}{\mathrm{6}+\frac{\mathrm{16}}{\mathrm{3}}}=\frac{\mathrm{15}}{\mathrm{17}},\:\mathrm{sin}\:\alpha=\frac{\frac{\mathrm{16}}{\mathrm{3}}}{\mathrm{6}+\frac{\mathrm{16}}{\mathrm{3}}}=\frac{\mathrm{8}}{\mathrm{17}} \\ $$$$\frac{{DB}}{\mathrm{10}}=\frac{{r}+\mathrm{12}}{\mathrm{6}+{r}} \\ $$$$\Rightarrow{DB}=\left(\mathrm{1}+\frac{\mathrm{6}}{\mathrm{6}+\frac{\mathrm{16}}{\mathrm{3}}}\right)×\mathrm{10}=\frac{\mathrm{260}}{\mathrm{17}} \\ $$$${EB}^{\mathrm{2}} =\left(\mathrm{10}+\frac{\mathrm{260}}{\mathrm{17}}\right)^{\mathrm{2}} +\left(\mathrm{6}+\mathrm{2}×\frac{\mathrm{16}}{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{10}+\frac{\mathrm{260}}{\mathrm{17}}\right)\left(\mathrm{6}+\mathrm{2}×\frac{\mathrm{16}}{\mathrm{3}}\right)×\frac{\mathrm{15}}{\mathrm{17}} \\ $$$$\Rightarrow{EB}=\frac{\mathrm{20}\sqrt{\mathrm{1129}}}{\mathrm{51}} \\ $$$$\mathrm{sin}\:\beta=\frac{\left(\mathrm{6}+\mathrm{3}×\frac{\mathrm{16}}{\mathrm{3}}\right)×\frac{\mathrm{8}}{\mathrm{17}}}{\frac{\mathrm{20}\sqrt{\mathrm{1129}}}{\mathrm{51}}}=\frac{\mathrm{20}}{\:\sqrt{\mathrm{1129}}} \\ $$$$\gamma=\frac{\pi}{\mathrm{2}}+\alpha=\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{8}}{\mathrm{17}} \\ $$$${shaded}\:{area}\:=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{260}}{\mathrm{17}}×\frac{\mathrm{20}\sqrt{\mathrm{1129}}}{\mathrm{51}}×\frac{\mathrm{20}}{\:\sqrt{\mathrm{1129}}}+\frac{\mathrm{1}}{\mathrm{2}}×\left(\frac{\mathrm{16}}{\mathrm{3}}\right)^{\mathrm{2}} \left(\frac{\mathrm{15}}{\mathrm{17}}−\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{8}}{\mathrm{17}}\right) \\ $$$$\:\:\:\:\:=\frac{\mathrm{20960}}{\:\mathrm{289}}−\frac{\mathrm{128}}{\mathrm{9}}\left(\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{8}}{\mathrm{17}}\right) \\ $$$$\:\:\:\:\:\approx\mathrm{43}.\mathrm{217455} \\ $$
Commented by Tawa11 last updated on 07/Aug/25

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Commented by mr W last updated on 07/Aug/25

Commented by Tawa11 last updated on 08/Aug/25

$$\mathrm{Wow},\:\mathrm{great}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 08/Aug/25

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{name}\:\mathrm{of}\:\mathrm{this}\:\mathrm{app}\:\mathrm{sir}. \\ $$
Commented by fantastic last updated on 08/Aug/25

$${sir}\:{can}\:{you}\:{please}\:{provide}\:{the}\:{link}? \\ $$
Commented by fantastic last updated on 08/Aug/25

$${I}\:{think}\:{it}\:{is}\:{premium} \\ $$
Commented by MathematicalUser2357 last updated on 11/Aug/25
You can buy a "premium" app after installing the app. The "premium" app is not instantly installed. And you can buy an "expensive" app instantly. You can say: I think it is expensive