Menu Close

Question-224028




Question Number 224028 by behi834171 last updated on 15/Aug/25
Answered by Rasheed.Sindhi last updated on 15/Aug/25
(((x+c^2 )(x−ab))/((x+a^2 )(x+b^2 )))=(c/(a+b))  (a+b)(x^2 +(−ab+c^2 )x−abc^2 )                               =c(x^2 +(a^2 +b^2 )x+a^2 b^2 )  (a+b−c)x^2 +(−ab+c^2 −a^2 −b^2 )x−abc^2 −a^2 b^2 =0  (a+b−c)x^2 −(a^2 +b^2 −c^2 +ab)x−ab(c^2 −ab)=0  x=((a^2 +b^2 −c^2 +ab ±(√((a^2 +b^2 −c^2 +ab)^2 −4(a+b−c)(−ab(c^2 −ab)))))/(2(a+b−c)))  x=((a^2 +b^2 −c^2 +ab ±(√((a^2 +b^2 −c^2 +ab)^2 +4ab(a+b−c)(c^2 −ab))))/(2(a+b−c)))  Simplifying above is very hard.
$$\frac{\left({x}+{c}^{\mathrm{2}} \right)\left({x}−{ab}\right)}{\left({x}+{a}^{\mathrm{2}} \right)\left({x}+{b}^{\mathrm{2}} \right)}=\frac{{c}}{{a}+{b}} \\ $$$$\left({a}+{b}\right)\left({x}^{\mathrm{2}} +\left(−{ab}+{c}^{\mathrm{2}} \right){x}−{abc}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={c}\left({x}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){x}+{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right) \\ $$$$\left({a}+{b}−{c}\right){x}^{\mathrm{2}} +\left(−{ab}+{c}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}−{abc}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({a}+{b}−{c}\right){x}^{\mathrm{2}} −\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{ab}\right){x}−{ab}\left({c}^{\mathrm{2}} −{ab}\right)=\mathrm{0} \\ $$$${x}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{ab}\:\pm\sqrt{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{ab}\right)^{\mathrm{2}} −\mathrm{4}\left({a}+{b}−{c}\right)\left(−{ab}\left({c}^{\mathrm{2}} −{ab}\right)\right)}}{\mathrm{2}\left({a}+{b}−{c}\right)} \\ $$$${x}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{ab}\:\pm\sqrt{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{ab}\right)^{\mathrm{2}} +\mathrm{4}{ab}\left({a}+{b}−{c}\right)\left({c}^{\mathrm{2}} −{ab}\right)}}{\mathrm{2}\left({a}+{b}−{c}\right)} \\ $$$${Simplifying}\:{above}\:{is}\:{very}\:{hard}. \\ $$$$\: \\ $$
Commented by Ghisom last updated on 15/Aug/25
we can factorize Δ  ⇒  x=−((abc)/(a+b−c))∨x=ab+ac+bc
$$\mathrm{we}\:\mathrm{can}\:\mathrm{factorize}\:\Delta \\ $$$$\Rightarrow \\ $$$${x}=−\frac{{abc}}{{a}+{b}−{c}}\vee{x}={ab}+{ac}+{bc} \\ $$
Commented by Rasheed.Sindhi last updated on 16/Aug/25
Thanks Sir!
$${Thanks}\:{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *