Menu Close

Two-masses-of-3-kg-and-6-kg-are-placed-2-m-apart-in-space-Calculate-the-gravitational-force-between-them-Take-G-6-673-10-11-Nm-2-kg-2-




Question Number 224071 by MirHasibulHossain last updated on 17/Aug/25
Two masses of 3 kg and 6 kg are placed 2 m  apart in space.  Calculate the gravitational force between them.  (Take G=6.673×10^(−11)  Nm^2 kg^(−2) )
$$\mathrm{Two}\:\mathrm{masses}\:\mathrm{of}\:\mathrm{3}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{6}\:\mathrm{kg}\:\mathrm{are}\:\mathrm{placed}\:\mathrm{2}\:\mathrm{m}\:\:\mathrm{apart}\:\mathrm{in}\:\mathrm{space}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{gravitational}\:\mathrm{force}\:\mathrm{between}\:\mathrm{them}. \\ $$$$\left(\mathrm{Take}\:\mathrm{G}=\mathrm{6}.\mathrm{673}×\mathrm{10}^{−\mathrm{11}} \:\mathrm{Nm}^{\mathrm{2}} \mathrm{kg}^{−\mathrm{2}} \right) \\ $$
Answered by MrAjder last updated on 18/Aug/25
F=G((m_1 m_2 )/r^2 )  m_1 =3,m_2 =6,r=2,G=6.673×10^(−11)   m_1 m_2 =3×6=18  r^2 =2^2 =4  G∙m_1 ∙m_2 =6.673×10^(−11) ×18=1.20114×10^(−9)   F=((1.20114×10^(−9) )/4)=3.00285×10^(−10)
$${F}={G}\frac{{m}_{\mathrm{1}} {m}_{\mathrm{2}} }{{r}^{\mathrm{2}} } \\ $$$${m}_{\mathrm{1}} =\mathrm{3},{m}_{\mathrm{2}} =\mathrm{6},{r}=\mathrm{2},{G}=\mathrm{6}.\mathrm{673}×\mathrm{10}^{−\mathrm{11}} \\ $$$${m}_{\mathrm{1}} {m}_{\mathrm{2}} =\mathrm{3}×\mathrm{6}=\mathrm{18} \\ $$$${r}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$${G}\centerdot{m}_{\mathrm{1}} \centerdot{m}_{\mathrm{2}} =\mathrm{6}.\mathrm{673}×\mathrm{10}^{−\mathrm{11}} ×\mathrm{18}=\mathrm{1}.\mathrm{20114}×\mathrm{10}^{−\mathrm{9}} \\ $$$${F}=\frac{\mathrm{1}.\mathrm{20114}×\mathrm{10}^{−\mathrm{9}} }{\mathrm{4}}=\mathrm{3}.\mathrm{00285}×\mathrm{10}^{−\mathrm{10}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *