Menu Close

Question-224108




Question Number 224108 by MirHasibulHossain last updated on 21/Aug/25
Answered by mr W last updated on 21/Aug/25
i think if the three big blue circles   have different radii a_1 , a_2 , a_3 ,   generally we have  bc=(1/((2/(a_1 a_2 ))+(2/(a_2 a_3 ))+(2/(a_3 a_1 ))−(1/a_1 ^2 )−(1/a_2 ^2 )−(1/a_3 ^2 )))
$${i}\:{think}\:{if}\:{the}\:{three}\:{big}\:{blue}\:{circles}\: \\ $$$${have}\:{different}\:{radii}\:{a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:{a}_{\mathrm{3}} ,\: \\ $$$${generally}\:{we}\:{have} \\ $$$${bc}=\frac{\mathrm{1}}{\frac{\mathrm{2}}{{a}_{\mathrm{1}} {a}_{\mathrm{2}} }+\frac{\mathrm{2}}{{a}_{\mathrm{2}} {a}_{\mathrm{3}} }+\frac{\mathrm{2}}{{a}_{\mathrm{3}} {a}_{\mathrm{1}} }−\frac{\mathrm{1}}{{a}_{\mathrm{1}} ^{\mathrm{2}} }−\frac{\mathrm{1}}{{a}_{\mathrm{2}} ^{\mathrm{2}} }−\frac{\mathrm{1}}{{a}_{\mathrm{3}} ^{\mathrm{2}} }} \\ $$
Commented by fantastic last updated on 21/Aug/25
I got  sin^(−1) ((a_1 /(a_1 +c)))+sin^(−1) ((a_2 /(a_2 +c)))+sin^(−1) ((a_3 /(a_3 +c)))=180
$${I}\:{got} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left(\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{1}} +{c}}\right)+\mathrm{sin}^{−\mathrm{1}} \left(\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{2}} +{c}}\right)+\mathrm{sin}^{−\mathrm{1}} \left(\frac{{a}_{\mathrm{3}} }{{a}_{\mathrm{3}} +{c}}\right)=\mathrm{180} \\ $$
Answered by mr W last updated on 21/Aug/25
a=(((√3)(a+c))/2) ⇒c=((2/( (√3)))−1)a  b=2a+c=((2/( (√3)))+1)a  3bc=3((2/( (√3)))+1)((2/( (√3)))−1)a^2 =3((4/3)−1)a^2 =a^2  ✓
$${a}=\frac{\sqrt{\mathrm{3}}\left({a}+{c}\right)}{\mathrm{2}}\:\Rightarrow{c}=\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}−\mathrm{1}\right){a} \\ $$$${b}=\mathrm{2}{a}+{c}=\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}+\mathrm{1}\right){a} \\ $$$$\mathrm{3}{bc}=\mathrm{3}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}+\mathrm{1}\right)\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}−\mathrm{1}\right){a}^{\mathrm{2}} =\mathrm{3}\left(\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{1}\right){a}^{\mathrm{2}} ={a}^{\mathrm{2}} \:\checkmark \\ $$
Commented by fantastic last updated on 21/Aug/25
Is your problem fixed now?
$${Is}\:{your}\:{problem}\:{fixed}\:{now}? \\ $$
Commented by mr W last updated on 21/Aug/25
no. it′s still there.
$${no}.\:{it}'{s}\:{still}\:{there}. \\ $$
Answered by fantastic last updated on 21/Aug/25
(2a)^2 =(c+a)^2 +(c+a)^2 −2(c+a)^2 cos 120^0   ⇒3(c+a)^2   2a=(√3)(c+a)  a=((√3)/2)(c+a)⇒c=(2/( (√3)))a−a=((2/( (√3)))−1)a  2a+c=b  2a+a((2/( (√3)))−1)=b  a(1+(2/( (√3))))=b  bc=a(1+(2/( (√3))))×a((2/( (√3)))−1)=a^2 ((2/( (√3)))+1)((2/( (√3)))−1)  =a^2 ((4/3)−1)=a^2 (1/3)  a^2 =3bc
$$\left(\mathrm{2}{a}\right)^{\mathrm{2}} =\left({c}+{a}\right)^{\mathrm{2}} +\left({c}+{a}\right)^{\mathrm{2}} −\mathrm{2}\left({c}+{a}\right)^{\mathrm{2}} \mathrm{cos}\:\mathrm{120}^{\mathrm{0}} \\ $$$$\Rightarrow\mathrm{3}\left({c}+{a}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{a}=\sqrt{\mathrm{3}}\left({c}+{a}\right) \\ $$$${a}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({c}+{a}\right)\Rightarrow{c}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{a}−{a}=\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}−\mathrm{1}\right){a} \\ $$$$\mathrm{2}{a}+{c}={b} \\ $$$$\mathrm{2}{a}+{a}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}−\mathrm{1}\right)={b} \\ $$$${a}\left(\mathrm{1}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)={b} \\ $$$${bc}={a}\left(\mathrm{1}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)×{a}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}−\mathrm{1}\right)={a}^{\mathrm{2}} \left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}+\mathrm{1}\right)\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}−\mathrm{1}\right) \\ $$$$={a}^{\mathrm{2}} \left(\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{1}\right)={a}^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{3}} \\ $$$${a}^{\mathrm{2}} =\mathrm{3}{bc} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *