Menu Close

lt-a-lt-b-lt-and-0-lt-lt-1-x-1-a-x-2-b-x-n-2-x-n-1-x-n-1-n-N-find-x-n-




Question Number 224392 by infinityaction last updated on 07/Sep/25
       −∞<a<b<∞  and 0<λ<1           x_1  = a , x_2  = b          x_(n+2)  = λx_n  + (1−λ)x_(n+1)   ∀ n ∈ N    find  x_(n )  = ?
$$\:\:\:\:\:\:\:−\infty<{a}<{b}<\infty\:\:{and}\:\mathrm{0}<\lambda<\mathrm{1}\:\: \\ $$$$\:\:\:\:\:\:\:{x}_{\mathrm{1}} \:=\:{a}\:,\:{x}_{\mathrm{2}} \:=\:{b} \\ $$$$\:\:\:\:\:\:\:\:{x}_{{n}+\mathrm{2}} \:=\:\lambda{x}_{{n}} \:+\:\left(\mathrm{1}−\lambda\right){x}_{{n}+\mathrm{1}} \:\:\forall\:{n}\:\in\:\mathbb{N} \\ $$$$\:\:\mathrm{find}\:\:{x}_{{n}\:} \:=\:?\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$
Answered by mr W last updated on 07/Sep/25
r^2 −(1−λ)r−λ=0  r=1, −λ  x_n =A+B(−λ)^n   x_1 =A−λB=a  x_2 =A+λ^2 B=b  ⇒B=((b−a)/(λ(1+λ)))  ⇒A=((b+λa)/(1+λ))  ⇒x_n =((b+λa+(−1)^n (b−a)λ^(n−1) )/(1+λ))
$${r}^{\mathrm{2}} −\left(\mathrm{1}−\lambda\right){r}−\lambda=\mathrm{0} \\ $$$${r}=\mathrm{1},\:−\lambda \\ $$$${x}_{{n}} ={A}+{B}\left(−\lambda\right)^{{n}} \\ $$$${x}_{\mathrm{1}} ={A}−\lambda{B}={a} \\ $$$${x}_{\mathrm{2}} ={A}+\lambda^{\mathrm{2}} {B}={b} \\ $$$$\Rightarrow{B}=\frac{{b}−{a}}{\lambda\left(\mathrm{1}+\lambda\right)} \\ $$$$\Rightarrow{A}=\frac{{b}+\lambda{a}}{\mathrm{1}+\lambda} \\ $$$$\Rightarrow{x}_{{n}} =\frac{{b}+\lambda{a}+\left(−\mathrm{1}\right)^{{n}} \left({b}−{a}\right)\lambda^{{n}−\mathrm{1}} }{\mathrm{1}+\lambda} \\ $$
Answered by mr W last updated on 07/Sep/25
x_(n+2) −x_(n+1) =−λ(x_(n+1) −x_n )  x_n −x_(n−1) =−λ(x_(n−1) −x_(n−2) )                      =(−λ)^2 (x_(n−2) −x_(n−3) )                      ...                      =(−λ)^(n−2) (x_2 −x_1 )                      =(−λ)^(n−2) (b−a)  Σ_(k=2) ^n x_k −Σ_(k=2) ^n x_(k−1) =(b−a)Σ_(k=2) ^n (−λ)^(k−2)   Σ_(k=2) ^n x_k −Σ_(k=1) ^(n−1) x_k =(b−a)Σ_(k=0) ^(n−2) (−λ)^k   x_n −x_1 =(b−a)×((1−(−λ)^(n−1) )/(1+λ))  ⇒x_n =a+(((b−a)[1−(−λ)^(n−1) ])/(1+λ))
$${x}_{{n}+\mathrm{2}} −{x}_{{n}+\mathrm{1}} =−\lambda\left({x}_{{n}+\mathrm{1}} −{x}_{{n}} \right) \\ $$$${x}_{{n}} −{x}_{{n}−\mathrm{1}} =−\lambda\left({x}_{{n}−\mathrm{1}} −{x}_{{n}−\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(−\lambda\right)^{\mathrm{2}} \left({x}_{{n}−\mathrm{2}} −{x}_{{n}−\mathrm{3}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(−\lambda\right)^{{n}−\mathrm{2}} \left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(−\lambda\right)^{{n}−\mathrm{2}} \left({b}−{a}\right) \\ $$$$\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}{x}_{{k}} −\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}{x}_{{k}−\mathrm{1}} =\left({b}−{a}\right)\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\left(−\lambda\right)^{{k}−\mathrm{2}} \\ $$$$\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}{x}_{{k}} −\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{x}_{{k}} =\left({b}−{a}\right)\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{2}} {\sum}}\left(−\lambda\right)^{{k}} \\ $$$${x}_{{n}} −{x}_{\mathrm{1}} =\left({b}−{a}\right)×\frac{\mathrm{1}−\left(−\lambda\right)^{{n}−\mathrm{1}} }{\mathrm{1}+\lambda} \\ $$$$\Rightarrow{x}_{{n}} ={a}+\frac{\left({b}−{a}\right)\left[\mathrm{1}−\left(−\lambda\right)^{{n}−\mathrm{1}} \right]}{\mathrm{1}+\lambda} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *