Menu Close

in-a-rhombus-the-perimeter-is-2p-and-the-sum-of-its-diagonals-is-m-the-area-of-rhombus-is-




Question Number 224502 by fantastic last updated on 15/Sep/25
in a rhombus the perimeter  is 2p and the sum of its diagonals  is m.  the area of rhombus is...
$${in}\:{a}\:{rhombus}\:{the}\:{perimeter} \\ $$$${is}\:\mathrm{2}{p}\:{and}\:{the}\:{sum}\:{of}\:{its}\:{diagonals} \\ $$$${is}\:{m}. \\ $$$${the}\:{area}\:{of}\:{rhombus}\:{is}… \\ $$
Answered by som(math1967) last updated on 15/Sep/25
each side of the rhombus=(p/2)   let diagonals are x,y   x+y=m  ⇒(x^2 /4)+(y^2 /4)+((xy)/2)=(m^2 /4)  ⇒ (p^2 /4) +((xy)/2)=(m^2 /4)    ⇒((xy)/2)=((m^2 −p^2 )/4)    =area of   the rhombus
$${each}\:{side}\:{of}\:{the}\:{rhombus}=\frac{{p}}{\mathrm{2}} \\ $$$$\:{let}\:{diagonals}\:{are}\:{x},{y} \\ $$$$\:{x}+{y}={m} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{y}^{\mathrm{2}} }{\mathrm{4}}+\frac{{xy}}{\mathrm{2}}=\frac{{m}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow\:\frac{{p}^{\mathrm{2}} }{\mathrm{4}}\:+\frac{{xy}}{\mathrm{2}}=\frac{{m}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$$$\Rightarrow\frac{{xy}}{\mathrm{2}}=\frac{{m}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:={area}\:{of}\: \\ $$$${the}\:{rhombus} \\ $$
Commented by fantastic last updated on 15/Sep/25
sir  x^2 +y^2 ≠((p/2))^2
$${sir} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} \neq\left(\frac{{p}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$
Commented by som(math1967) last updated on 15/Sep/25
yes i have a mistake
$${yes}\:{i}\:{have}\:{a}\:{mistake} \\ $$
Commented by fantastic last updated on 15/Sep/25
now it is right!
$${now}\:{it}\:{is}\:{right}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *