Menu Close

let-I-be-the-incenter-of-a-non-isosceles-ABC-and-let-the-incircle-be-tanget-to-the-sides-point-D-E-F-the-line-AI-intersects-ABC-at-A-and-S-the-line-SD-intersect




Question Number 224594 by Nicholas666 last updated on 20/Sep/25
      let I be the incenter of a non−isosceles  ΔABC            and let the incircle be tanget to the sides point D,E,F.               the line AI intersects  (ABC) at A and S.       the line SD intersects  (ABC) at S and T.                let IT ∩ EF =M,  (BIC) ∩  (DEF)=K,L.          prove that KDLM is a kite.
$$ \\ $$$$\:\:\:\:\mathrm{let}\:{I}\:\mathrm{be}\:\mathrm{the}\:\mathrm{incenter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{non}−\mathrm{isosceles}\:\:\Delta{ABC}\:\:\:\:\:\: \\ $$$$\:\:\:\:\mathrm{and}\:\mathrm{let}\:\mathrm{the}\:\mathrm{incircle}\:\mathrm{be}\:\mathrm{tanget}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{point}\:{D},{E},{F}.\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{line}\:{AI}\:\mathrm{intersects}\: \left({ABC}\right)\:\mathrm{at}\:{A}\:\mathrm{and}\:{S}. \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{line}\:{SD}\:\mathrm{intersects}\: \left({ABC}\right)\:\mathrm{at}\:{S}\:\mathrm{and}\:{T}.\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\mathrm{let}\:{IT}\:\cap\:{EF}\:={M},\: \left({BIC}\right)\:\cap\: \left({DEF}\right)={K},{L}. \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:{KDLM}\:\mathrm{is}\:\mathrm{a}\:\mathrm{kite}. \\ $$$$ \\ $$$$ \\ $$
Commented by Nicholas666 last updated on 20/Sep/25

Leave a Reply

Your email address will not be published. Required fields are marked *