Menu Close

A-binary-operation-is-defined-on-a-set-real-numbers-R-by-x-y-2x-2y-xy-3-find-i-The-inverse-of-x-under-the-operation-ii-Truth-set-when-m-7-2-m-




Question Number 224614 by necx122 last updated on 21/Sep/25
A binary operation ∗ is defined on a set  real numbers, R by  x∗y = 2x + 2y −((xy)/3) .  find:  (i) The inverse of x under the operation ∗  (ii) Truth set when m∗7=−2∗m
$${A}\:{binary}\:{operation}\:\ast\:{is}\:{defined}\:{on}\:{a}\:{set} \\ $$$${real}\:{numbers},\:{R}\:{by} \\ $$$${x}\ast{y}\:=\:\mathrm{2}{x}\:+\:\mathrm{2}{y}\:−\frac{{xy}}{\mathrm{3}}\:. \\ $$$${find}: \\ $$$$\left({i}\right)\:{The}\:{inverse}\:{of}\:{x}\:{under}\:{the}\:{operation}\:\ast \\ $$$$\left({ii}\right)\:{Truth}\:{set}\:{when}\:{m}\ast\mathrm{7}=−\mathrm{2}\ast{m} \\ $$
Answered by hfdghcdfj last updated on 22/Sep/25
$$ \\ $$
Answered by Ghisom_ last updated on 22/Sep/25
for an inverse element we need a neutral  element n  in our case x∗y=y∗x, so we′re looking  for n with  ∀x: x∗n=x ⇒ n must be independent of x  x∗n=2x+2n−((xn)/3)=x ⇒ n=((3x)/(x+6))  ⇒ n doesn′t exist ⇒ no inverse exists    m∗7=−2∗m  the rhs is not defined  −2∗m=−(2∗m) or −2∗m=(−2)∗m  we cannot solve this without further  information
$$\mathrm{for}\:\mathrm{an}\:\mathrm{inverse}\:\mathrm{element}\:\mathrm{we}\:\mathrm{need}\:\mathrm{a}\:\mathrm{neutral} \\ $$$$\mathrm{element}\:{n} \\ $$$$\mathrm{in}\:\mathrm{our}\:\mathrm{case}\:{x}\ast{y}={y}\ast{x},\:\mathrm{so}\:\mathrm{we}'\mathrm{re}\:\mathrm{looking} \\ $$$$\mathrm{for}\:{n}\:\mathrm{with} \\ $$$$\forall{x}:\:{x}\ast{n}={x}\:\Rightarrow\:{n}\:\mathrm{must}\:\mathrm{be}\:\mathrm{independent}\:\mathrm{of}\:{x} \\ $$$${x}\ast{n}=\mathrm{2}{x}+\mathrm{2}{n}−\frac{{xn}}{\mathrm{3}}={x}\:\Rightarrow\:{n}=\frac{\mathrm{3}{x}}{{x}+\mathrm{6}} \\ $$$$\Rightarrow\:{n}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}\:\Rightarrow\:\mathrm{no}\:\mathrm{inverse}\:\mathrm{exists} \\ $$$$ \\ $$$${m}\ast\mathrm{7}=−\mathrm{2}\ast{m} \\ $$$$\mathrm{the}\:\mathrm{rhs}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined} \\ $$$$−\mathrm{2}\ast{m}=−\left(\mathrm{2}\ast{m}\right)\:\mathrm{or}\:−\mathrm{2}\ast{m}=\left(−\mathrm{2}\right)\ast{m} \\ $$$$\mathrm{we}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{without}\:\mathrm{further} \\ $$$$\mathrm{information} \\ $$
Commented by necx122 last updated on 22/Sep/25
Thank you, sir
$${Thank}\:{you},\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *