Question Number 224635 by hardmath last updated on 23/Sep/25

$$\mathrm{Prove}\:\mathrm{that}:\:\:\:\mathrm{sin}\left(\mathrm{54}°\right)\:=\:\:\frac{\sqrt{\mathrm{5}}\:+\:\mathrm{1}}{\mathrm{4}} \\ $$
Answered by som(math1967) last updated on 23/Sep/25
![let 54=α ∴5α=270 ⇒3α=270−2α ⇒sin3α=sin(270−2α) ⇒3sinα−4sin^3 α=−cos2α ⇒4sin^3 α+2sin^2 α−3sinα−1=08 ⇒4x^3 +2x^2 −3x−1=0 [sinα=sin54=x let] ⇒4x^3 +4x^2 −2x^2 −2x−x−1=0 ⇒4x^2 (x+1)−2x(x+1)−1(x+1)=0 (x+1)(4x^2 −2x−1)=0 ⇒4x^2 −2x−1=0 [ (x+1)≠0, 54 is acute] x=((2+(√(4+4×4×1)))/8) =((2(1+(√5)))/8)=(((√5)+1)/4) ∴sin54=(((√5)+1)/4)](https://www.tinkutara.com/question/Q224640.png)
$$\:{let}\:\mathrm{54}=\alpha \\ $$$$\therefore\mathrm{5}\alpha=\mathrm{270} \\ $$$$\Rightarrow\mathrm{3}\alpha=\mathrm{270}−\mathrm{2}\alpha \\ $$$$\Rightarrow{sin}\mathrm{3}\alpha={sin}\left(\mathrm{270}−\mathrm{2}\alpha\right) \\ $$$$\Rightarrow\mathrm{3}{sin}\alpha−\mathrm{4}{sin}^{\mathrm{3}} \alpha=−{cos}\mathrm{2}\alpha \\ $$$$\Rightarrow\mathrm{4}{sin}^{\mathrm{3}} \alpha+\mathrm{2}{sin}^{\mathrm{2}} \alpha−\mathrm{3}{sin}\alpha−\mathrm{1}=\mathrm{08} \\ $$$$\Rightarrow\mathrm{4}{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}=\mathrm{0} \\ $$$$\left[{sin}\alpha={sin}\mathrm{54}={x}\:{let}\right] \\ $$$$\Rightarrow\mathrm{4}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}−{x}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)−\mathrm{2}{x}\left({x}+\mathrm{1}\right)−\mathrm{1}\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}=\mathrm{0}\:\left[\:\left({x}+\mathrm{1}\right)\neq\mathrm{0},\:\mathrm{54}\:{is}\:{acute}\right] \\ $$$$\:{x}=\frac{\mathrm{2}+\sqrt{\mathrm{4}+\mathrm{4}×\mathrm{4}×\mathrm{1}}}{\mathrm{8}} \\ $$$$\:\:=\frac{\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)}{\mathrm{8}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}} \\ $$$$\:\therefore{sin}\mathrm{54}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$