Menu Close

Let-f-be-a-continuously-differentiable-function-such-that-0-2x-2-f-t-dt-e-cos-x-2-for-all-x-0-the-value-of-f-pi-




Question Number 224733 by fantastic last updated on 30/Sep/25
Let f be a continuously differentiable function  such that  ∫_0 ^(2x^2 ) f(t)dt=e^(cos x^2 )  for all x∈(0,∞)  the value of f ′(π)=?
$${Let}\:{f}\:{be}\:{a}\:{continuously}\:{differentiable}\:{function} \\ $$$${such}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}{x}^{\mathrm{2}} } {f}\left({t}\right){dt}={e}^{\mathrm{cos}\:{x}^{\mathrm{2}} } \:{for}\:{all}\:{x}\in\left(\mathrm{0},\infty\right) \\ $$$${the}\:{value}\:{of}\:{f}\:'\left(\pi\right)=? \\ $$
Answered by mr W last updated on 01/Oct/25
f(2x^2 )×4x=−2xsin x^2 e^(cos x^2 )   2f(2x^2 )=−sin x^2 e^(cos x^2 )   let t=2x^2   f(t)=−(1/2) sin (t/2)e^(cos (t/2))   f′(t)=(1/4)(sin^2  (t/2)−cos (t/2))e^(cos (t/2))   f′(π)=(1/4)(sin^2  (π/2)−cos (π/2))e^(cos (π/2)) =(1/4)
$${f}\left(\mathrm{2}{x}^{\mathrm{2}} \right)×\mathrm{4}{x}=−\mathrm{2}{x}\mathrm{sin}\:{x}^{\mathrm{2}} {e}^{\mathrm{cos}\:{x}^{\mathrm{2}} } \\ $$$$\mathrm{2}{f}\left(\mathrm{2}{x}^{\mathrm{2}} \right)=−\mathrm{sin}\:{x}^{\mathrm{2}} {e}^{\mathrm{cos}\:{x}^{\mathrm{2}} } \\ $$$${let}\:{t}=\mathrm{2}{x}^{\mathrm{2}} \\ $$$${f}\left({t}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{t}}{\mathrm{2}}{e}^{\mathrm{cos}\:\frac{{t}}{\mathrm{2}}} \\ $$$${f}'\left({t}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{sin}^{\mathrm{2}} \:\frac{{t}}{\mathrm{2}}−\mathrm{cos}\:\frac{{t}}{\mathrm{2}}\right){e}^{\mathrm{cos}\:\frac{{t}}{\mathrm{2}}} \\ $$$${f}'\left(\pi\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{sin}^{\mathrm{2}} \:\frac{\pi}{\mathrm{2}}−\mathrm{cos}\:\frac{\pi}{\mathrm{2}}\right){e}^{\mathrm{cos}\:\frac{\pi}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by fantastic last updated on 01/Oct/25
you are right
$${you}\:{are}\:{right} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *