Menu Close

Let-u-y-2-x-2-x-2-y-2-v-z-2-y-2-y-2-z-2-for-x-0-y-0z-0-Let-w-f-u-v-where-f-is-a-real-valued-function-defined-on-R-2-having-continuous-first-order-partial-derivatives-the-value-




Question Number 224735 by fantastic last updated on 30/Sep/25
Let u=((y^2 −x^2 )/(x^2 y^2 )), v=((z^2 −y^2 )/(y^2 z^2 )) for x≠0,y≠0z≠0.  Let w=f(u,v), where f is a real  valued function defined on R^2   having continuous first order  partial derivatives.  the value of  x^3  (∂w/∂x)+y^3  (∂w/∂y)+z^3  (∂w/∂z) at point (1,2,3) is
$${Let}\:{u}=\frac{{y}^{\mathrm{2}} −{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} {y}^{\mathrm{2}} },\:{v}=\frac{{z}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{y}^{\mathrm{2}} {z}^{\mathrm{2}} }\:{for}\:{x}\neq\mathrm{0},{y}\neq\mathrm{0}{z}\neq\mathrm{0}. \\ $$$${Let}\:{w}={f}\left({u},{v}\right),\:{where}\:{f}\:{is}\:{a}\:{real} \\ $$$${valued}\:{function}\:{defined}\:{on}\:{R}^{\mathrm{2}} \\ $$$${having}\:{continuous}\:{first}\:{order} \\ $$$${partial}\:{derivatives}. \\ $$$${the}\:{value}\:{of} \\ $$$${x}^{\mathrm{3}} \:\frac{\partial{w}}{\partial{x}}+{y}^{\mathrm{3}} \:\frac{\partial{w}}{\partial{y}}+{z}^{\mathrm{3}} \:\frac{\partial{w}}{\partial{z}}\:{at}\:{point}\:\left(\mathrm{1},\mathrm{2},\mathrm{3}\right)\:{is} \\ $$
Answered by mr W last updated on 04/Oct/25
u=(1/x^2 )−(1/y^2 )  ⇒(∂u/∂x)=−(2/x^3 ), (∂u/∂y)=(2/y^3 ), (∂u/∂z)=0  v=(1/y^2 )−(1/z^2 )  ⇒(∂v/∂x)=0, (∂v/∂y)=−(2/y^3 ), (∂v/∂z)=(2/z^3 )  (∂w/∂x)=(∂w/∂u)×(∂u/∂x)+(∂w/∂v)×(∂v/∂x)=−(2/x^3 )×(∂w/∂u)+(∂w/∂v)×0  (∂w/∂y)=(∂w/∂u)×(∂u/∂y)+(∂w/∂v)×(∂v/∂y)=(2/y^3 )×(∂w/∂u)−(2/y^3 )×(∂w/∂v)  (∂w/∂z)=(∂w/∂u)×(∂u/∂z)+(∂w/∂v)×(∂v/∂z)=(∂w/∂u)×0+(2/z^3 )×(∂w/∂v)  x^3 (∂w/∂x)+y^3 (∂w/∂y)+z^3 (∂w/∂z)  =x^3 (−(2/x^3 )×(∂w/∂u))+y^3 ((2/y^3 )×(∂w/∂u)−(2/y^3 )×(∂w/∂v))+z^3 ((2/z^3 )×(∂w/∂v))  =−2(∂w/∂u)+2(∂w/∂u)−2(∂w/∂v)+2(∂w/∂v)  =0 ✓
$${u}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{y}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\partial{u}}{\partial{x}}=−\frac{\mathrm{2}}{{x}^{\mathrm{3}} },\:\frac{\partial{u}}{\partial{y}}=\frac{\mathrm{2}}{{y}^{\mathrm{3}} },\:\frac{\partial{u}}{\partial{z}}=\mathrm{0} \\ $$$${v}=\frac{\mathrm{1}}{{y}^{\mathrm{2}} }−\frac{\mathrm{1}}{{z}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\partial{v}}{\partial{x}}=\mathrm{0},\:\frac{\partial{v}}{\partial{y}}=−\frac{\mathrm{2}}{{y}^{\mathrm{3}} },\:\frac{\partial{v}}{\partial{z}}=\frac{\mathrm{2}}{{z}^{\mathrm{3}} } \\ $$$$\frac{\partial{w}}{\partial{x}}=\frac{\partial{w}}{\partial{u}}×\frac{\partial{u}}{\partial{x}}+\frac{\partial{w}}{\partial{v}}×\frac{\partial{v}}{\partial{x}}=−\frac{\mathrm{2}}{{x}^{\mathrm{3}} }×\frac{\partial{w}}{\partial{u}}+\frac{\partial{w}}{\partial{v}}×\mathrm{0} \\ $$$$\frac{\partial{w}}{\partial{y}}=\frac{\partial{w}}{\partial{u}}×\frac{\partial{u}}{\partial{y}}+\frac{\partial{w}}{\partial{v}}×\frac{\partial{v}}{\partial{y}}=\frac{\mathrm{2}}{{y}^{\mathrm{3}} }×\frac{\partial{w}}{\partial{u}}−\frac{\mathrm{2}}{{y}^{\mathrm{3}} }×\frac{\partial{w}}{\partial{v}} \\ $$$$\frac{\partial{w}}{\partial{z}}=\frac{\partial{w}}{\partial{u}}×\frac{\partial{u}}{\partial{z}}+\frac{\partial{w}}{\partial{v}}×\frac{\partial{v}}{\partial{z}}=\frac{\partial{w}}{\partial{u}}×\mathrm{0}+\frac{\mathrm{2}}{{z}^{\mathrm{3}} }×\frac{\partial{w}}{\partial{v}} \\ $$$${x}^{\mathrm{3}} \frac{\partial{w}}{\partial{x}}+{y}^{\mathrm{3}} \frac{\partial{w}}{\partial{y}}+{z}^{\mathrm{3}} \frac{\partial{w}}{\partial{z}} \\ $$$$={x}^{\mathrm{3}} \left(−\frac{\mathrm{2}}{{x}^{\mathrm{3}} }×\frac{\partial{w}}{\partial{u}}\right)+{y}^{\mathrm{3}} \left(\frac{\mathrm{2}}{{y}^{\mathrm{3}} }×\frac{\partial{w}}{\partial{u}}−\frac{\mathrm{2}}{{y}^{\mathrm{3}} }×\frac{\partial{w}}{\partial{v}}\right)+{z}^{\mathrm{3}} \left(\frac{\mathrm{2}}{{z}^{\mathrm{3}} }×\frac{\partial{w}}{\partial{v}}\right) \\ $$$$=−\mathrm{2}\frac{\partial{w}}{\partial{u}}+\mathrm{2}\frac{\partial{w}}{\partial{u}}−\mathrm{2}\frac{\partial{w}}{\partial{v}}+\mathrm{2}\frac{\partial{w}}{\partial{v}} \\ $$$$=\mathrm{0}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *