Question Number 224760 by fantastic last updated on 02/Oct/25

$$\mathrm{log}\:_{\mathrm{5}} \left(\mathrm{5}^{\frac{\mathrm{1}}{{x}}} +\mathrm{125}\right)=\mathrm{log}\:_{\mathrm{5}} \mathrm{6}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{x}} \\ $$$${x}=?? \\ $$
Answered by som(math1967) last updated on 02/Oct/25
![log_5 (5^(1/x) +125)=log_5 6+log_5 5+(1/(2x)) ⇒log_5 (((5^(1/x) +125)/(30)))=(1/(2x)) ⇒ 5^(1/x) +125=5^(1/(2x)) ×30 ⇒a^2 +125=30a [let 5^(1/(2x)) =a] ⇒a^2 −30a+125=0 ⇒(a−5)(a−25)=0 ⇒a=5⇒5^(1/(2x)) =5⇒(1/(2x))=1⇒x=(1/2) a=25⇒5^(1/(2x)) =5^2 ⇒x=(1/4)](https://www.tinkutara.com/question/Q224761.png)
$$\:{log}_{\mathrm{5}} \left(\mathrm{5}^{\frac{\mathrm{1}}{{x}}} +\mathrm{125}\right)={log}_{\mathrm{5}} \mathrm{6}+{log}_{\mathrm{5}} \mathrm{5}+\frac{\mathrm{1}}{\mathrm{2}{x}} \\ $$$$\Rightarrow{log}_{\mathrm{5}} \left(\frac{\mathrm{5}^{\frac{\mathrm{1}}{{x}}} +\mathrm{125}}{\mathrm{30}}\right)=\frac{\mathrm{1}}{\mathrm{2}{x}} \\ $$$$\Rightarrow\:\mathrm{5}^{\frac{\mathrm{1}}{{x}}} +\mathrm{125}=\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} ×\mathrm{30} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +\mathrm{125}=\mathrm{30}{a}\:\:\:\:\left[{let}\:\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} ={a}\right] \\ $$$$\Rightarrow{a}^{\mathrm{2}} −\mathrm{30}{a}+\mathrm{125}=\mathrm{0} \\ $$$$\Rightarrow\left({a}−\mathrm{5}\right)\left({a}−\mathrm{25}\right)=\mathrm{0} \\ $$$$\:\Rightarrow{a}=\mathrm{5}\Rightarrow\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} =\mathrm{5}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}{x}}=\mathrm{1}\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:{a}=\mathrm{25}\Rightarrow\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} =\mathrm{5}^{\mathrm{2}} \Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by fantastic last updated on 02/Oct/25

$${thank}\:{you} \\ $$