Question Number 224773 by Ismoiljon_008 last updated on 03/Oct/25

Answered by mr W last updated on 03/Oct/25

Commented by mr W last updated on 03/Oct/25

$${CD}=\sqrt{\mathrm{23}^{\mathrm{2}} −\mathrm{9}^{\mathrm{2}} }=\mathrm{8}\sqrt{\mathrm{7}} \\ $$$${PB}=\mathrm{2}{R}−\mathrm{5} \\ $$$${DQ}=\mathrm{2}{R} \\ $$$${CQ}=\sqrt{\left(\mathrm{2}{R}\right)^{\mathrm{2}} −\left(\mathrm{8}\sqrt{\mathrm{7}}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{{R}^{\mathrm{2}} −\mathrm{112}} \\ $$$${PQ}=\mathrm{2}\sqrt{{R}^{\mathrm{2}} −\mathrm{112}}−\mathrm{9} \\ $$$$\mathrm{9}×\left(\mathrm{2}\sqrt{{R}^{\mathrm{2}} −\mathrm{112}}−\mathrm{9}\right)=\mathrm{5}×\left(\mathrm{2}{R}−\mathrm{5}\right) \\ $$$$\mathrm{9}\sqrt{{R}^{\mathrm{2}} −\mathrm{112}}=\mathrm{5}{R}+\mathrm{28} \\ $$$$\mathrm{81}\left({R}^{\mathrm{2}} −\mathrm{112}\right)=\mathrm{25}{R}^{\mathrm{2}} +\mathrm{280}{R}+\mathrm{28}^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} −\mathrm{5}{R}−\mathrm{176}=\mathrm{0} \\ $$$$\left({R}−\mathrm{16}\right)\left({R}+\mathrm{11}\right)=\mathrm{0} \\ $$$$\Rightarrow{R}=\mathrm{16}\:\:\checkmark \\ $$
Commented by JV2BTC last updated on 03/Oct/25

$$ \\ $$$$\mathrm{ensured}\:\mathrm{by}\:\mathrm{the}\:\mathrm{Thaless}\:\mathrm{theorem}\: \\ $$
Commented by Ismoiljon_008 last updated on 04/Oct/25

$$\:{Thank}\:{you} \\ $$