Menu Close

a-piece-of-chalk-rests-on-a-horizontal-board-with-0-1-Suddenly-the-board-starts-to-move-horizontally-at-a-speed-of-2m-per-second-and-after-a-time-it-stops-abruptly-find-the-length-of-the-line-d




Question Number 224853 by fantastic last updated on 07/Oct/25
  a piece of chalk rests on a  horizontal board with μ=0.1  Suddenly the board starts to  move horizontally at a speed of  2m per second and after a  time τ it stops abruptly. find   the length of the line drawn  by the chalk on the board for  folowing cases  τ=5sec  τ=1sec  g=10m/s^2
$$ \\ $$$$\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{chalk}\:\mathrm{rests}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{board}\:\mathrm{with}\:\mu=\mathrm{0}.\mathrm{1} \\ $$$$\mathrm{Suddenly}\:\mathrm{the}\:\mathrm{board}\:\mathrm{starts}\:\mathrm{to} \\ $$$$\mathrm{move}\:\mathrm{horizontally}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{2m}\:\mathrm{per}\:\mathrm{second}\:\mathrm{and}\:\mathrm{after}\:\mathrm{a} \\ $$$$\mathrm{time}\:\tau\:\mathrm{it}\:\mathrm{stops}\:\mathrm{abruptly}.\:\mathrm{find}\: \\ $$$$\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{drawn} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{chalk}\:\mathrm{on}\:\mathrm{the}\:\mathrm{board}\:\mathrm{for} \\ $$$$\mathrm{folowing}\:\mathrm{cases} \\ $$$$\tau=\mathrm{5}{sec} \\ $$$$\tau=\mathrm{1}{sec} \\ $$$${g}=\mathrm{10}{m}/{s}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 14/Oct/25
do you have the answers?
$${do}\:{you}\:{have}\:{the}\:{answers}? \\ $$
Commented by fantastic last updated on 14/Oct/25
yes
$${yes} \\ $$
Commented by fantastic last updated on 14/Oct/25
i posted it here because i was  f acing  problem with the voice  of the teacher. if you know Hindi  you will face no problem. other wise   you can turn on subtitel.  I can simply tell you the solution  but I highly recommend you and   other iterested people to  watch the video .  the Q needs a very high visualisation.
$${i}\:{posted}\:{it}\:{here}\:{because}\:{i}\:{was} \\ $$$${f}\:{acing}\:\:{problem}\:{with}\:{the}\:{voice} \\ $$$${of}\:{the}\:{teacher}.\:{if}\:{you}\:{know}\:{Hindi} \\ $$$${you}\:{will}\:{face}\:{no}\:{problem}.\:{other}\:{wise}\: \\ $$$${you}\:{can}\:{turn}\:{on}\:{subtitel}. \\ $$$${I}\:{can}\:{simply}\:{tell}\:{you}\:{the}\:{solution} \\ $$$${but}\:{I}\:{highly}\:{recommend}\:{you}\:{and} \\ $$$$\:{other}\:{iterested}\:{people}\:{to} \\ $$$${watch}\:{the}\:{video}\:. \\ $$$${the}\:{Q}\:{needs}\:{a}\:{very}\:{high}\:{visualisation}. \\ $$
Commented by fantastic last updated on 14/Oct/25
a) 2m  b) 1.5m
$$\left.{a}\right)\:\mathrm{2}{m} \\ $$$$\left.{b}\right)\:\mathrm{1}.\mathrm{5}{m} \\ $$
Commented by fantastic last updated on 14/Oct/25
https://youtu.be/sL4vvgR4Alg?si=ujzpEG4Q9LIVsrby
Commented by mr W last updated on 14/Oct/25
i got the same results. thanks!  i try to solve the questions in this  forum purely for fun. usually i try  to solve them in my own way and am  not really interested how other  people solve.  i′m from Germany and don′t  understand Hindi either.
$${i}\:{got}\:{the}\:{same}\:{results}.\:{thanks}! \\ $$$${i}\:{try}\:{to}\:{solve}\:{the}\:{questions}\:{in}\:{this} \\ $$$${forum}\:{purely}\:{for}\:{fun}.\:{usually}\:{i}\:{try} \\ $$$${to}\:{solve}\:{them}\:{in}\:{my}\:{own}\:{way}\:{and}\:{am} \\ $$$${not}\:{really}\:{interested}\:{how}\:{other} \\ $$$${people}\:{solve}. \\ $$$${i}'{m}\:{from}\:{Germany}\:{and}\:{don}'{t} \\ $$$${understand}\:{Hindi}\:{either}. \\ $$
Commented by fantastic last updated on 14/Oct/25
wow!
$${wow}!\: \\ $$
Commented by fantastic last updated on 14/Oct/25
Sir i think you mingled  the 1st and 2nd case
$${Sir}\:{i}\:{think}\:{you}\:{mingled} \\ $$$${the}\:\mathrm{1}{st}\:{and}\:\mathrm{2}{nd}\:{case} \\ $$
Commented by fantastic last updated on 14/Oct/25
only one Q.  why the f_(kinetic)  will act at the  same direction of the boards velocity?
$${only}\:{one}\:{Q}. \\ $$$${why}\:{the}\:{f}_{{kinetic}} \:{will}\:{act}\:{at}\:{the} \\ $$$${same}\:{direction}\:{of}\:{the}\:{boards}\:{velocity}? \\ $$$$ \\ $$
Commented by mr W last updated on 15/Oct/25
the question asked two cases. it′s  inessential which case is treated  as first and which as second.  it′s unfortunate that you pointed this  out as if it were a fault.
$${the}\:{question}\:{asked}\:{two}\:{cases}.\:{it}'{s} \\ $$$${inessential}\:{which}\:{case}\:{is}\:{treated} \\ $$$${as}\:{first}\:{and}\:{which}\:{as}\:{second}. \\ $$$${it}'{s}\:{unfortunate}\:{that}\:{you}\:{pointed}\:{this} \\ $$$${out}\:{as}\:{if}\:{it}\:{were}\:{a}\:{fault}. \\ $$
Commented by mr W last updated on 15/Oct/25
Commented by mr W last updated on 15/Oct/25
but at the moment when the board  stops abruptly, the board rests while  the chalk continues to move.
$${but}\:{at}\:{the}\:{moment}\:{when}\:{the}\:{board} \\ $$$${stops}\:{abruptly},\:{the}\:{board}\:{rests}\:{while} \\ $$$${the}\:{chalk}\:{continues}\:{to}\:{move}. \\ $$
Commented by mr W last updated on 15/Oct/25
Kinetic friction tries to reduce the relative motion between two objects.  at t=0, the board moves to right, say,  and the chalk remains in rest. the  direction of friction is always   opposite to the direction of the  relative motion of the objects.
Kinetic friction tries to reduce the relative motion between two objects.
$${at}\:{t}=\mathrm{0},\:{the}\:{board}\:{moves}\:{to}\:{right},\:{say}, \\ $$$${and}\:{the}\:{chalk}\:{remains}\:{in}\:{rest}.\:{the} \\ $$$${direction}\:{of}\:{friction}\:{is}\:{always}\: \\ $$$${opposite}\:{to}\:{the}\:{direction}\:{of}\:{the} \\ $$$${relative}\:{motion}\:{of}\:{the}\:{objects}. \\ $$
Commented by mr W last updated on 15/Oct/25
Commented by fantastic last updated on 15/Oct/25
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Answered by mr W last updated on 16/Oct/25
at t=0:  both board and chalk are in rest.  when the board begins to move with  speed v=2 m/s suddently, say   towards right, the challk remains   in rest, but obtains a kinetic friction  force f in the direction of the   movement of the board. this friction  force brings the chalk to move with  an acceleration a.  ma=f=μmg   ⇒a=μg=0.1×10=1 m/s^2   after time t, the distance the board  has moved is  s_B =vt=2t  and the distance the chalk has moved  is  s_C =((at^2 )/2)=0.5t^2   as soon as the chalk has the same  velocity as the board, there is no  relative motion between them and  therefore no friction. upon now  both object move with the same  velocity.   at=v ⇒t=(v/a)=(2/1)=2 s.  i.e. after 2 s.  the length of the line drawn by the  chalk on the board is the relative  displacement between both objects:  d=s_B −s_C =2t−0.5t^2
$${at}\:{t}=\mathrm{0}: \\ $$$${both}\:{board}\:{and}\:{chalk}\:{are}\:{in}\:{rest}. \\ $$$${when}\:{the}\:{board}\:{begins}\:{to}\:{move}\:{with} \\ $$$${speed}\:{v}=\mathrm{2}\:{m}/{s}\:{suddently},\:{say}\: \\ $$$${towards}\:{right},\:{the}\:{challk}\:{remains}\: \\ $$$${in}\:{rest},\:{but}\:{obtains}\:{a}\:{kinetic}\:{friction} \\ $$$${force}\:{f}\:{in}\:{the}\:{direction}\:{of}\:{the}\: \\ $$$${movement}\:{of}\:{the}\:{board}.\:{this}\:{friction} \\ $$$${force}\:{brings}\:{the}\:{chalk}\:{to}\:{move}\:{with} \\ $$$${an}\:{acceleration}\:{a}. \\ $$$${ma}={f}=\mu{mg}\: \\ $$$$\Rightarrow{a}=\mu{g}=\mathrm{0}.\mathrm{1}×\mathrm{10}=\mathrm{1}\:{m}/{s}^{\mathrm{2}} \\ $$$${after}\:{time}\:{t},\:{the}\:{distance}\:{the}\:{board} \\ $$$${has}\:{moved}\:{is} \\ $$$${s}_{{B}} ={vt}=\mathrm{2}{t} \\ $$$${and}\:{the}\:{distance}\:{the}\:{chalk}\:{has}\:{moved} \\ $$$${is} \\ $$$${s}_{{C}} =\frac{{at}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{0}.\mathrm{5}{t}^{\mathrm{2}} \\ $$$${as}\:{soon}\:{as}\:{the}\:{chalk}\:{has}\:{the}\:{same} \\ $$$${velocity}\:{as}\:{the}\:{board},\:{there}\:{is}\:{no} \\ $$$${relative}\:{motion}\:{between}\:{them}\:{and} \\ $$$${therefore}\:{no}\:{friction}.\:{upon}\:{now} \\ $$$${both}\:{object}\:{move}\:{with}\:{the}\:{same} \\ $$$${velocity}.\: \\ $$$${at}={v}\:\Rightarrow{t}=\frac{{v}}{{a}}=\frac{\mathrm{2}}{\mathrm{1}}=\mathrm{2}\:{s}. \\ $$$${i}.{e}.\:{after}\:\mathrm{2}\:{s}. \\ $$$${the}\:{length}\:{of}\:{the}\:{line}\:{drawn}\:{by}\:{the} \\ $$$${chalk}\:{on}\:{the}\:{board}\:{is}\:{the}\:{relative} \\ $$$${displacement}\:{between}\:{both}\:{objects}: \\ $$$${d}={s}_{{B}} −{s}_{{C}} =\mathrm{2}{t}−\mathrm{0}.\mathrm{5}{t}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 13/Oct/25
Commented by mr W last updated on 13/Oct/25
the trace of the chalk on the board:
$${the}\:{trace}\:{of}\:{the}\:{chalk}\:{on}\:{the}\:{board}: \\ $$
Commented by mr W last updated on 14/Oct/25
case 1:   the board stops abruptly after 1 s.  at t=1 s:   distance moved by the board is   s_B =2×1=2 m  distance moved by the chalk is   s_C =0.5×1^2 =0.5 m  at this moment the velocity of the  chalk is 1×1=1 m/s.  after this moment the board is  kept in rest, but the chalk remains  in motion. but the friction is now in  opposite direction. that means the  acceleration is also in opposite   direction:  a=−μg=−1 m/s^2   after 1 s the chalk also stops. during  this time the chalk moves further  0.5 m.  the maximal relative displacement  and therefore the length of the  line drawn by the chalk is at t=1 s:  s_B −s_C =2−0.5=1.5 m.
$${case}\:\mathrm{1}:\: \\ $$$${the}\:{board}\:{stops}\:{abruptly}\:{after}\:\mathrm{1}\:{s}. \\ $$$${at}\:{t}=\mathrm{1}\:{s}:\: \\ $$$${distance}\:{moved}\:{by}\:{the}\:{board}\:{is}\: \\ $$$${s}_{{B}} =\mathrm{2}×\mathrm{1}=\mathrm{2}\:{m} \\ $$$${distance}\:{moved}\:{by}\:{the}\:{chalk}\:{is}\: \\ $$$${s}_{{C}} =\mathrm{0}.\mathrm{5}×\mathrm{1}^{\mathrm{2}} =\mathrm{0}.\mathrm{5}\:{m} \\ $$$${at}\:{this}\:{moment}\:{the}\:{velocity}\:{of}\:{the} \\ $$$${chalk}\:{is}\:\mathrm{1}×\mathrm{1}=\mathrm{1}\:{m}/{s}. \\ $$$${after}\:{this}\:{moment}\:{the}\:{board}\:{is} \\ $$$${kept}\:{in}\:{rest},\:{but}\:{the}\:{chalk}\:{remains} \\ $$$${in}\:{motion}.\:{but}\:{the}\:{friction}\:{is}\:{now}\:{in} \\ $$$${opposite}\:{direction}.\:{that}\:{means}\:{the} \\ $$$${acceleration}\:{is}\:{also}\:{in}\:{opposite}\: \\ $$$${direction}: \\ $$$${a}=−\mu{g}=−\mathrm{1}\:{m}/{s}^{\mathrm{2}} \\ $$$${after}\:\mathrm{1}\:{s}\:{the}\:{chalk}\:{also}\:{stops}.\:{during} \\ $$$${this}\:{time}\:{the}\:{chalk}\:{moves}\:{further} \\ $$$$\mathrm{0}.\mathrm{5}\:{m}. \\ $$$${the}\:{maximal}\:{relative}\:{displacement} \\ $$$${and}\:{therefore}\:{the}\:{length}\:{of}\:{the} \\ $$$${line}\:{drawn}\:{by}\:{the}\:{chalk}\:{is}\:{at}\:{t}=\mathrm{1}\:{s}: \\ $$$${s}_{{B}} −{s}_{{C}} =\mathrm{2}−\mathrm{0}.\mathrm{5}=\mathrm{1}.\mathrm{5}\:{m}. \\ $$
Commented by mr W last updated on 14/Oct/25
Commented by mr W last updated on 13/Oct/25
Commented by mr W last updated on 13/Oct/25
the trace of the chalk on the board:
$${the}\:{trace}\:{of}\:{the}\:{chalk}\:{on}\:{the}\:{board}: \\ $$
Commented by mr W last updated on 14/Oct/25
case 2:   the board stops abruptly after 5 s.  at t=2 s:   velocity of chalk is 1×2=2 m/s.  distance moved by board is 2×2=4 m.  distance moved by chalk is 0.5×1×2^2 =2 m.  the relative displacement is 4−2=2 m.  after this moment the chalk moves  with the same speed as the board, so  the friction force and therefore   also its acceleration is zero.  at t=5 s:  the board stops abruptly.  after this moment the board is  kept in rest, but the chalk remains  in motion and with an acceleration  in opposite direction  a=−μg=−1 m/s^2 .  after 2 s also the chalk stops. during  this time the distance moved by the  chalk is 2×2−0.5×1×2^2 =2 m.    the length of the line drawn by the  chalk is the maximal relative  displacement at t=2 till 5 s:  s_B −s_C =4−2=2 m.
$${case}\:\mathrm{2}:\: \\ $$$${the}\:{board}\:{stops}\:{abruptly}\:{after}\:\mathrm{5}\:{s}. \\ $$$${at}\:{t}=\mathrm{2}\:{s}:\: \\ $$$${velocity}\:{of}\:{chalk}\:{is}\:\mathrm{1}×\mathrm{2}=\mathrm{2}\:{m}/{s}. \\ $$$${distance}\:{moved}\:{by}\:{board}\:{is}\:\mathrm{2}×\mathrm{2}=\mathrm{4}\:{m}. \\ $$$${distance}\:{moved}\:{by}\:{chalk}\:{is}\:\mathrm{0}.\mathrm{5}×\mathrm{1}×\mathrm{2}^{\mathrm{2}} =\mathrm{2}\:{m}. \\ $$$${the}\:{relative}\:{displacement}\:{is}\:\mathrm{4}−\mathrm{2}=\mathrm{2}\:{m}. \\ $$$${after}\:{this}\:{moment}\:{the}\:{chalk}\:{moves} \\ $$$${with}\:{the}\:{same}\:{speed}\:{as}\:{the}\:{board},\:{so} \\ $$$${the}\:{friction}\:{force}\:{and}\:{therefore}\: \\ $$$${also}\:{its}\:{acceleration}\:{is}\:{zero}. \\ $$$${at}\:{t}=\mathrm{5}\:{s}: \\ $$$${the}\:{board}\:{stops}\:{abruptly}. \\ $$$${after}\:{this}\:{moment}\:{the}\:{board}\:{is} \\ $$$${kept}\:{in}\:{rest},\:{but}\:{the}\:{chalk}\:{remains} \\ $$$${in}\:{motion}\:{and}\:{with}\:{an}\:{acceleration} \\ $$$${in}\:{opposite}\:{direction} \\ $$$${a}=−\mu{g}=−\mathrm{1}\:{m}/{s}^{\mathrm{2}} . \\ $$$${after}\:\mathrm{2}\:{s}\:{also}\:{the}\:{chalk}\:{stops}.\:{during} \\ $$$${this}\:{time}\:{the}\:{distance}\:{moved}\:{by}\:{the} \\ $$$${chalk}\:{is}\:\mathrm{2}×\mathrm{2}−\mathrm{0}.\mathrm{5}×\mathrm{1}×\mathrm{2}^{\mathrm{2}} =\mathrm{2}\:{m}. \\ $$$$ \\ $$$${the}\:{length}\:{of}\:{the}\:{line}\:{drawn}\:{by}\:{the} \\ $$$${chalk}\:{is}\:{the}\:{maximal}\:{relative} \\ $$$${displacement}\:{at}\:{t}=\mathrm{2}\:{till}\:\mathrm{5}\:{s}: \\ $$$${s}_{{B}} −{s}_{{C}} =\mathrm{4}−\mathrm{2}=\mathrm{2}\:{m}. \\ $$
Commented by mr W last updated on 14/Oct/25
Commented by mr W last updated on 14/Oct/25
Commented by ajfour last updated on 16/Oct/25
https://youtu.be/G_goL8NB2JQ?si=3Ybz8e5654HFqO4I

Leave a Reply

Your email address will not be published. Required fields are marked *