Menu Close

lim-n-1-1-2-1-3-1-4-1-n-ln-n-




Question Number 224852 by fantastic last updated on 07/Oct/25
lim_(n→∞)  ((1+(1/2)+(1/3)+(1/4)+...+(1/n))/(ln(n)))=?
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{{n}}}{{ln}\left({n}\right)}=? \\ $$
Answered by vnm last updated on 08/Oct/25
lim=1  This follows from the double inequality   which is evident if we plot   the graph of the function y=(1/x).  Σ_(k=2) ^n (1/k)<ln n=∫_1 ^n (dx/x)<Σ_(k=1) ^(n−1) (1/k), n≥2
$$\mathrm{lim}=\mathrm{1} \\ $$$$\mathrm{This}\:\mathrm{follows}\:\mathrm{from}\:\mathrm{the}\:\mathrm{double}\:\mathrm{inequality}\: \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{evident}\:\mathrm{if}\:\mathrm{we}\:\mathrm{plot}\: \\ $$$$\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:{y}=\frac{\mathrm{1}}{{x}}. \\ $$$$\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}<\mathrm{ln}\:{n}=\underset{\mathrm{1}} {\overset{{n}} {\int}}\frac{\mathrm{d}{x}}{{x}}<\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{k}},\:{n}\geqslant\mathrm{2} \\ $$
Answered by mathmax last updated on 14/Oct/25
1+(1/2)+....+(1/n)=H_n ∼ln(n)+γ ⇒  ((1+(1/2)+....+(1/n))/(ln(n)))∼1+(γ/(ln(n)))→1  (n→+∞)
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+….+\frac{\mathrm{1}}{{n}}={H}_{{n}} \sim{ln}\left({n}\right)+\gamma\:\Rightarrow \\ $$$$\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+….+\frac{\mathrm{1}}{{n}}}{{ln}\left({n}\right)}\sim\mathrm{1}+\frac{\gamma}{{ln}\left({n}\right)}\rightarrow\mathrm{1}\:\:\left({n}\rightarrow+\infty\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *