Menu Close

evaluate-C-3y-2-2z-2-dx-6x-10z-y-dy-4xz-5y-2-dz-along-the-portion-from-1-0-1-to-3-4-5-of-the-curve-C-which-is-the-intersection-of-the-two-surfaces-z-2-x-2-y-2-and-z-y-1-




Question Number 224915 by fantastic last updated on 11/Oct/25
evaluate   ∫_C (3y^2 +2z^2 )dx+(6x−10z)y dy +(4xz−5y^2 )dz  along the portion from (1,0,1) to (3,4,5) of  the curve C,  which is the intersection of the  two surfaces z^2 =x^2 +y^2  and z=y+1
$${evaluate}\: \\ $$$$\int_{{C}} \left(\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{z}^{\mathrm{2}} \right){dx}+\left(\mathrm{6}{x}−\mathrm{10}{z}\right){y}\:{dy}\:+\left(\mathrm{4}{xz}−\mathrm{5}{y}^{\mathrm{2}} \right){dz} \\ $$$${along}\:{the}\:{portion}\:{from}\:\left(\mathrm{1},\mathrm{0},\mathrm{1}\right)\:{to}\:\left(\mathrm{3},\mathrm{4},\mathrm{5}\right)\:{of} \\ $$$${the}\:{curve}\:{C}, \\ $$$${which}\:{is}\:{the}\:{intersection}\:{of}\:{the} \\ $$$${two}\:{surfaces}\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{and}\:{z}={y}+\mathrm{1} \\ $$
Answered by ajfour last updated on 13/Oct/25
Intersection curve  2y=x^2 −1  let y+(1/2)=t^2      , x=t(√2)  for x=1, y=0, z=1, t=(1/( (√2)))  for x=3, y=4, z=5, t=(3/( (√2)))  dx=(√2)dt  dy=2tdt  ∫_(1/(√2)) ^(  3/(√2)) {3(t^2 −(1/2))^2 +2(t^2 +(1/2))^2 }dt  =∫(5t^4 −t^2 +(5/4))=(t^5 −(t^3 /3)+((5t)/4))^(3/(√2)) _(1/(√2))   similarly the rest...
$${Intersection}\:{curve} \\ $$$$\mathrm{2}{y}={x}^{\mathrm{2}} −\mathrm{1} \\ $$$${let}\:{y}+\frac{\mathrm{1}}{\mathrm{2}}={t}^{\mathrm{2}} \:\:\:\:\:,\:{x}={t}\sqrt{\mathrm{2}} \\ $$$${for}\:{x}=\mathrm{1},\:{y}=\mathrm{0},\:{z}=\mathrm{1},\:{t}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$${for}\:{x}=\mathrm{3},\:{y}=\mathrm{4},\:{z}=\mathrm{5},\:{t}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}} \\ $$$${dx}=\sqrt{\mathrm{2}}{dt} \\ $$$${dy}=\mathrm{2}{tdt} \\ $$$$\overset{\:\:\mathrm{3}/\sqrt{\mathrm{2}}} {\int}_{\mathrm{1}/\sqrt{\mathrm{2}}} \left\{\mathrm{3}\left({t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\left({t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \right\}{dt} \\ $$$$=\int\left(\mathrm{5}{t}^{\mathrm{4}} −{t}^{\mathrm{2}} +\frac{\mathrm{5}}{\mathrm{4}}\right)=\left({t}^{\mathrm{5}} −\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{5}{t}}{\mathrm{4}}\underset{\mathrm{1}/\sqrt{\mathrm{2}}} {\right)}^{\mathrm{3}/\sqrt{\mathrm{2}}} \\ $$$${similarly}\:{the}\:{rest}… \\ $$
Commented by ajfour last updated on 13/Oct/25
https://youtu.be/drf__zRLz4M?si=AJwQMGb8yZAk0wth

Leave a Reply

Your email address will not be published. Required fields are marked *