Menu Close

S-x-y-z-R-3-x-2-y-2-z-2-r-2-Find-Geodesic-equation-d-dt-dx-i-dt-jk-i-dx-j-dt-dx-k-dt-0-jk-i-g-il-g-kl-x-j-g-jl-x-k-g-jk-x-l-




Question Number 224938 by fkwow344 last updated on 13/Oct/25
S;(x,y,z)∈R^3 ∣x^2 +y^2 +z^2 =r^2   Find Geodesic equation  ((d  )/dt)∙(dx^i /dt)+Γ_(jk) ^i (dx^j /dt)∙(dx^k /dt)=0  ,  Γ_(jk) ^i =g^(il) ((∂g_(kl) /∂x_j )−(∂g_(jl) /∂x_k )+(∂g_(jk) /∂x_l ))
$$\mathcal{S};\left({x},{y},{z}\right)\in\mathbb{R}^{\mathrm{3}} \mid{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{Find}\:\mathrm{Geodesic}\:\mathrm{equation} \\ $$$$\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\centerdot\frac{\mathrm{d}{x}^{{i}} }{\mathrm{d}{t}}+\Gamma_{{jk}} ^{{i}} \frac{\mathrm{d}{x}^{{j}} }{\mathrm{d}{t}}\centerdot\frac{\mathrm{d}{x}^{{k}} }{\mathrm{d}{t}}=\mathrm{0}\:\:,\:\:\Gamma_{{jk}} ^{{i}} =\mathrm{g}^{{il}} \left(\frac{\partial\mathrm{g}_{{kl}} }{\partial{x}_{{j}} }−\frac{\partial\mathrm{g}_{{jl}} }{\partial{x}_{{k}} }+\frac{\partial\mathrm{g}_{{jk}} }{\partial{x}_{{l}} }\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *