Menu Close

tgx-tgy-tgz-A-tg-3-x-tg-3-y-tg-3-z-




Question Number 225020 by Abdulazim last updated on 15/Oct/25
   tgx+tgy+tgz=A     tg^3 x+tg^3 y+tg^3 z=?
$$\:\:\:{tgx}+{tgy}+{tgz}={A} \\ $$$$\:\:\:{tg}^{\mathrm{3}} {x}+{tg}^{\mathrm{3}} {y}+{tg}^{\mathrm{3}} {z}=? \\ $$
Commented by mr W last updated on 16/Oct/25
you can not uniquely determine p_3 ,  if only p_1  is given.  with p_n =a^n +b^n +c^n  and  a=tan x, b=tan y, c=tan z
$${you}\:{can}\:{not}\:{uniquely}\:{determine}\:{p}_{\mathrm{3}} , \\ $$$${if}\:{only}\:{p}_{\mathrm{1}} \:{is}\:{given}. \\ $$$${with}\:{p}_{{n}} ={a}^{{n}} +{b}^{{n}} +{c}^{{n}} \:{and} \\ $$$${a}=\mathrm{tan}\:{x},\:{b}=\mathrm{tan}\:{y},\:{c}=\mathrm{tan}\:{z} \\ $$
Answered by fkwow344 last updated on 16/Oct/25
g^2 A......  and let′s introduce Zero divisor in math.  and Let R be a Ring   An element a∈R is called a zero divisor   if a≠0 and there exist b≠0 such that ab=0  isn′t it fun??  :⟩  for example Z\{0} is Ring But Z\{0} isn′t Zero divisor  or matrix A∈Mat_n (M)    A= ((1,0),(0,0) ) , B= ((0,0),(0,1) )  , AB=0
$${g}^{\mathrm{2}} {A}…… \\ $$$$\mathrm{and}\:\mathrm{let}'\mathrm{s}\:\mathrm{introduce}\:\mathrm{Zero}\:\mathrm{divisor}\:\mathrm{in}\:\mathrm{math}. \\ $$$$\mathrm{and}\:\mathrm{Let}\:\mathcal{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{Ring}\: \\ $$$$\mathrm{An}\:\mathrm{element}\:{a}\in\mathcal{R}\:\mathrm{is}\:\mathrm{called}\:\mathrm{a}\:\mathrm{zero}\:\mathrm{divisor}\: \\ $$$$\mathrm{if}\:{a}\neq\mathrm{0}\:\mathrm{and}\:\mathrm{there}\:\mathrm{exist}\:{b}\neq\mathrm{0}\:\mathrm{such}\:\mathrm{that}\:{ab}=\mathrm{0} \\ $$$$\mathrm{isn}'\mathrm{t}\:\mathrm{it}\:\mathrm{fun}??\:\::\rangle \\ $$$$\mathrm{for}\:\mathrm{example}\:\mathbb{Z}\backslash\left\{\mathrm{0}\right\}\:\mathrm{is}\:\mathrm{Ring}\:\mathrm{But}\:\mathbb{Z}\backslash\left\{\mathrm{0}\right\}\:\mathrm{isn}'\mathrm{t}\:\mathrm{Zero}\:\mathrm{divisor} \\ $$$$\mathrm{or}\:\mathrm{matrix}\:{A}\in\mathrm{Mat}_{{n}} \left({M}\right)\:\: \\ $$$${A}=\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}\end{pmatrix}\:,\:{B}=\begin{pmatrix}{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix}\:\:,\:{AB}=\mathrm{0} \\ $$$$\:\:\: \\ $$
Commented by Tinku Tara last updated on 16/Oct/25
Is this answer relevant to the question?
$$\mathrm{Is}\:\mathrm{this}\:\mathrm{answer}\:\mathrm{relevant}\:\mathrm{to}\:\mathrm{the}\:\mathrm{question}? \\ $$
Commented by fkwow344 last updated on 16/Oct/25
me...??? ummm....  And if you′re talking to me the answer is ′′yes′′  Because it′s not just going to be about multiplication  its going to be about providing a wider field of view  So my intention was that by introducing to  Zero division which is about modern algebra  i can provide better motivation for math.   i really love Math
$$\mathrm{me}…???\:\mathrm{ummm}…. \\ $$$$\mathrm{And}\:\mathrm{if}\:\mathrm{you}'\mathrm{re}\:\mathrm{talking}\:\mathrm{to}\:\mathrm{me}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:''\mathrm{yes}'' \\ $$$$\mathrm{Because}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{just}\:\mathrm{going}\:\mathrm{to}\:\mathrm{be}\:\mathrm{about}\:\mathrm{multiplication} \\ $$$$\mathrm{its}\:\mathrm{going}\:\mathrm{to}\:\mathrm{be}\:\mathrm{about}\:\mathrm{providing}\:\mathrm{a}\:\mathrm{wider}\:\mathrm{field}\:\mathrm{of}\:\mathrm{view} \\ $$$$\mathrm{So}\:\mathrm{my}\:\mathrm{intention}\:\mathrm{was}\:\mathrm{that}\:\mathrm{by}\:\mathrm{introducing}\:\mathrm{to} \\ $$$$\mathrm{Zero}\:\mathrm{division}\:\mathrm{which}\:\mathrm{is}\:\mathrm{about}\:\mathrm{modern}\:\mathrm{algebra} \\ $$$$\mathrm{i}\:\mathrm{can}\:\mathrm{provide}\:\mathrm{better}\:\mathrm{motivation}\:\mathrm{for}\:\mathrm{math}. \\ $$$$\mathrm{i}\:\mathrm{really}\:\mathrm{love}\:\mathrm{Math}\: \\ $$
Commented by fantastic last updated on 16/Oct/25
for how many years you are  dating math or you have already  married math?
$${for}\:{how}\:{many}\:{years}\:{you}\:{are} \\ $$$${dating}\:{math}\:{or}\:{you}\:{have}\:{already} \\ $$$${married}\:{math}? \\ $$
Commented by fantastic last updated on 16/Oct/25
sir if i accidently uninstall  this app and then if i reinstall  the app do i have to make a new  account? or i can enter the user  name and password to  log in my account??
$${sir}\:{if}\:{i}\:{accidently}\:{uninstall} \\ $$$${this}\:{app}\:{and}\:{then}\:{if}\:{i}\:{reinstall} \\ $$$${the}\:{app}\:{do}\:{i}\:{have}\:{to}\:{make}\:{a}\:{new} \\ $$$${account}?\:{or}\:{i}\:{can}\:{enter}\:{the}\:{user} \\ $$$${name}\:{and}\:{password}\:{to} \\ $$$${log}\:{in}\:{my}\:{account}?? \\ $$
Commented by Tinku Tara last updated on 16/Oct/25
You can remember your password than you can login. For equation in your personal work you can export to SD card and reimport. Anything that you did not post to forum is not connected to your login id snd must be backed using google backup or in app mechanism to save to sd card

Leave a Reply

Your email address will not be published. Required fields are marked *