Menu Close

The-new-symbols-are-in-progress-New-update-will-be-release-by-end-of-this-month-with-Close-integration-symbols-Italic-greek-capital-letters-Ability-to-upload-GIF-images-If-anyone-has-any-other




Question Number 225003 by Tinku Tara last updated on 15/Oct/25
The new symbols are in  progress. New update will be release  by end of this month with  - Close integration symbols  - Italic greek capital letters  - Ability to upload GIF images    If anyone has any other improvement  suggestion please email us or comment  here
$$\mathrm{The}\:\mathrm{new}\:\mathrm{symbols}\:\mathrm{are}\:\mathrm{in} \\ $$$$\mathrm{progress}.\:\mathrm{New}\:\mathrm{update}\:\mathrm{will}\:\mathrm{be}\:\mathrm{release} \\ $$$$\mathrm{by}\:\mathrm{end}\:\mathrm{of}\:\mathrm{this}\:\mathrm{month}\:\mathrm{with} \\ $$$$-\:\mathrm{Close}\:\mathrm{integration}\:\mathrm{symbols} \\ $$$$-\:\mathrm{Italic}\:\mathrm{greek}\:\mathrm{capital}\:\mathrm{letters} \\ $$$$-\:\mathrm{Ability}\:\mathrm{to}\:\mathrm{upload}\:\mathrm{GIF}\:\mathrm{images} \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{anyone}\:\mathrm{has}\:\mathrm{any}\:\mathrm{other}\:\mathrm{improvement} \\ $$$$\mathrm{suggestion}\:\mathrm{please}\:\mathrm{email}\:\mathrm{us}\:\mathrm{or}\:\mathrm{comment} \\ $$$$\mathrm{here} \\ $$
Commented by mr W last updated on 15/Oct/25
also animated gif images?
$${also}\:{animated}\:{gif}\:{images}? \\ $$
Commented by Tawa11 last updated on 15/Oct/25
Conjugate symbol.
$$\boldsymbol{\mathrm{Conjugate}}\:\boldsymbol{\mathrm{symbol}}. \\ $$
Commented by fantastic last updated on 15/Oct/25
please add nabla [▽]  water image of Δ
$${please}\:{add}\:{nabla}\:\left[\bigtriangledown\right] \\ $$$${water}\:{image}\:{of}\:\Delta \\ $$
Commented by Tawa11 last updated on 15/Oct/25
Commented by Tawa11 last updated on 15/Oct/25
Commented by Tawa11 last updated on 15/Oct/25
And ability to put that  bar  and the subscript  k  and that bracket on   H
$$\mathrm{And}\:\mathrm{ability}\:\mathrm{to}\:\mathrm{put}\:\mathrm{that}\:\:\mathrm{bar}\:\:\mathrm{and}\:\mathrm{the}\:\mathrm{subscript}\:\:\mathrm{k} \\ $$$$\mathrm{and}\:\mathrm{that}\:\mathrm{bracket}\:\mathrm{on}\:\:\:\mathrm{H} \\ $$
Commented by fantastic last updated on 15/Oct/25
and in the last row   in the ′′ sin′′ button please add  (dy/dx) and (∂y/∂x) so we dont have to  type it mannually
$${and}\:{in}\:{the}\:{last}\:{row}\: \\ $$$${in}\:{the}\:''\:\mathrm{sin}''\:{button}\:{please}\:{add} \\ $$$$\frac{{dy}}{{dx}}\:{and}\:\frac{\partial{y}}{\partial{x}}\:{so}\:{we}\:{dont}\:{have}\:{to} \\ $$$${type}\:{it}\:{mannually} \\ $$
Commented by Tinku Tara last updated on 15/Oct/25
Yes. The GIF upload support is for animated GIF support request that you raised sometime back
Commented by fantastic last updated on 15/Oct/25
Commented by BaliramKumar last updated on 15/Oct/25
Commented by BaliramKumar last updated on 15/Oct/25
multyple line select copy and paste ability
$$\mathrm{multyple}\:\mathrm{line}\:\mathrm{select}\:\mathrm{copy}\:\mathrm{and}\:\mathrm{paste}\:\mathrm{ability} \\ $$
Commented by Mathswiz last updated on 16/Oct/25
Sir here are my suggetions: 1. The integration symbol should become larger if the expression gets bigger. Currently it remains small. 2. multiple lines select, copy, paste, font change, bold, italics, colour at one go 3. Introduce fonts like Times New Roman, Ariel, bold fonts for heading etc... 4. facility to convert to latex in math mode. Currently everything is converted in text mode using mathrm string 5. copy and paste of borderless tables creates borders which is not desired. For that we have charts with borders as another option
Commented by fantastic last updated on 16/Oct/25
you wake up early.  good habit ... :)
$${you}\:{wake}\:{up}\:{early}. \\ $$$$\left.{good}\:{habit}\:…\::\right) \\ $$
Commented by fantastic last updated on 16/Oct/25
mirror ima ge
$${mirror}\:{ima}\:{ge} \\ $$
Commented by Tinku Tara last updated on 16/Oct/25
Latex coversion  f(x)=x^2  ⇒ math mode  f(x)=x^2    ⇒ mathrm
$$\mathrm{Latex}\:\mathrm{coversion} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \:\Rightarrow\:{math}\:{mode} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \:\:\:\Rightarrow\:\mathrm{mathrm} \\ $$
Commented by Tinku Tara last updated on 16/Oct/25
Converted Latex $$\mathrm{Latex}\:\mathrm{coversion} \\ $$ $${f}\left({x}\right)={x}^{\mathrm{2}} \:\Rightarrow\:{math}\:{mode} \\ $$ $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \:\:\:\Rightarrow\:\mathrm{mathrm} \\ $$
Commented by fantastic last updated on 18/Oct/25
$$ \\ $$ $${I}\:{DO}\:{NOT}\:{KNOW}\:{IF}\:{MY}\:{WORK}\:{IS}\:{CORRECT} \\ $$ $${At}\:{first}\:{we}\:{are}\:{going}\:{ti}\:{find}\:{the}\:{distant}\:{s} \\ $$ $$\ell_{\mathrm{0}} −{R}\theta−{Rd}\theta=\ell_{\mathrm{0}} −{R}\theta\left[\theta\:{is}\:{tooooo}\:{small}\right] \\ $$ $${so}\:{ds}=\left(\ell_{\mathrm{0}} −{R}\theta\right){d}\theta \\ $$ $$\therefore{s}=\underset{\mathrm{0}} {\overset{\psi} {\int}}\left(\ell_{\mathrm{0}} −{R}\theta\right){d}\theta \\ $$ $${now}\:{R}\psi=\ell_{\mathrm{0}} \\ $$ $${so}\:\psi=\frac{\ell_{\mathrm{0}} }{{R}} \\ $$ $${so} \\ $$ $${s}=\overset{\ell_{\mathrm{0}} /{R}} {\int}_{\mathrm{0}} \left(\ell_{\mathrm{0}} −{R}\theta\right){d}\theta \\ $$ $$=\left[\ell_{\mathrm{0}} \theta−{R}\frac{\theta^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\ell_{\mathrm{0}} }{{R}}} \\ $$ $$=\frac{\ell_{\mathrm{0}} ^{\mathrm{2}} }{{R}}−\frac{\ell_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}{R}} \\ $$ $$=\frac{\ell_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}{R}} \\ $$ $${So}\:{s}=\frac{\ell_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}{R}} \\ $$ $${now}\:{only}\:{kinetic}\:{friction}\:{will}\:{work}\:{here} \\ $$ $${v}_{{final}} =\mathrm{0} \\ $$ $${s}=\frac{\ell_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}{R}} \\ $$ $${u}={v}_{\mathrm{0}} \\ $$ $${a}_{{r}} =\frac{{mg}\mu_{{k}} }{{m}}={g}\mu_{{k}} \\ $$ $$\left({v}_{{final}} \right)^{\mathrm{2}} ={v}_{\mathrm{0}} ^{\mathrm{2}} −\mathrm{2}{as} \\ $$ $$\Rightarrow{v}_{\mathrm{0}} =\ell_{\mathrm{0}} \sqrt{\frac{{g}\mu_{{k}} }{{R}}} \\ $$
Answered by Kademi last updated on 19/Oct/25
 f′(x) → f ′(x)   C^k  → C^( k)     ((x/y))^′    →  ((x/y))^([′])    g^� []^2  → g^� ^2           Make it also possible to jump from line to line up and   down with arrows, like in a notepad.   Also would be nice to eliminate and add fractions   to already existing numbers. Like with square root.   (√x) → x   x^2 +x+1 →  ((x^2 +x+1)/n)    ((y^2 +y+1)/m) → y^2 +y+1
$$\:{f}'\left({x}\right)\:\rightarrow\:{f}\:'\left({x}\right) \\ $$$$\:{C}^{{k}} \:\rightarrow\:{C}^{\:{k}} \: \\ $$$$\:\left(\frac{{x}}{{y}}\right)^{'} \:\:\:\rightarrow\:\:\left(\frac{{x}}{{y}}\right)^{\left['\right]} \\ $$$$\:\bar {{g}}\left[\right]^{\mathrm{2}} \:\rightarrow\:\bar {{g}}\:^{\mathrm{2}} \:\:\:\: \\ $$$$\: \\ $$$$\:\mathrm{Make}\:\mathrm{it}\:\mathrm{also}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{jump}\:\mathrm{from}\:\mathrm{line}\:\mathrm{to}\:\mathrm{line}\:\mathrm{up}\:\mathrm{and} \\ $$$$\:\mathrm{down}\:\mathrm{with}\:\mathrm{arrows},\:\mathrm{like}\:\mathrm{in}\:\mathrm{a}\:\mathrm{notepad}. \\ $$$$\:\mathrm{Also}\:\mathrm{would}\:\mathrm{be}\:\mathrm{nice}\:\mathrm{to}\:\mathrm{eliminate}\:\mathrm{and}\:\mathrm{add}\:\mathrm{fractions} \\ $$$$\:\mathrm{to}\:\mathrm{already}\:\mathrm{existing}\:\mathrm{numbers}.\:\mathrm{Like}\:\mathrm{with}\:\mathrm{square}\:\mathrm{root}. \\ $$$$\:\sqrt{{x}}\:\rightarrow\:{x} \\ $$$$\:{x}^{\mathrm{2}} +{x}+\mathrm{1}\:\rightarrow\:\:\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{{n}}\: \\ $$$$\:\frac{{y}^{\mathrm{2}} +{y}+\mathrm{1}}{{m}}\:\rightarrow\:{y}^{\mathrm{2}} +{y}+\mathrm{1} \\ $$
Commented by Tinku Tara last updated on 19/Oct/25
You are right. Will change that.
Commented by Tinku Tara last updated on 19/Oct/25
The update just release does not  contain these changes. We will be  releasing another update sith your  suggestions
$$\mathrm{The}\:\mathrm{update}\:\mathrm{just}\:\mathrm{release}\:\mathrm{does}\:\mathrm{not} \\ $$$$\mathrm{contain}\:\mathrm{these}\:\mathrm{changes}.\:\mathrm{We}\:\mathrm{will}\:\mathrm{be} \\ $$$$\mathrm{releasing}\:\mathrm{another}\:\mathrm{update}\:\mathrm{sith}\:\mathrm{your} \\ $$$$\mathrm{suggestions} \\ $$
Commented by fantastic last updated on 19/Oct/25
sir the nabla shadow should be   in left side.  please consider that
$${sir}\:{the}\:{nabla}\:{shadow}\:{should}\:{be}\: \\ $$$${in}\:{left}\:{side}. \\ $$$${please}\:{consider}\:{that} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *