Menu Close

x-x-dx-




Question Number 225047 by fantastic last updated on 16/Oct/25
∫ x^x  dx
$$\int\:{x}^{{x}} \:{dx} \\ $$
Answered by Ghisom_ last updated on 16/Oct/25
impossible
$$\mathrm{impossible} \\ $$
Commented by fantastic last updated on 16/Oct/25
(d/dx)(x^x )
$$\frac{{d}}{{dx}}\left({x}^{{x}} \right) \\ $$
Commented by Ghisom_ last updated on 16/Oct/25
x^x (1+ln x)
$${x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right) \\ $$
Commented by Raphael254 last updated on 17/Oct/25
  y = u^v  ⇔ log_u  y = v    Changing the base of log:    log_u  y = ((ln y)/(ln u))    ((ln y)/(ln u)) = v    ((((y′)/y)×ln u − ln y×((u′)/u))/(ln^2  u)) = v′    ((ln u×y′)/y) − ((ln y×u′)/u) = v′×ln^2  u    ln u×y′×u − ln y×u′×y = v′×ln^2  u×uy    y′ = ((v′×ln^2  u×uy + ln y×u′×y)/(ln u×u))    y′ = v′×ln u×y + ((ln y×u′×y)/(ln u×u))    y′ = v′×ln u×(u^v ) + ((ln (u^v )×u′×(u^v ))/(ln u×u))    y′ = v′×ln u×u^v  + ((v×(ln u)×u′×u^v )/(ln u×u))    y′ = v′×ln u×u^v  + v×u′×u^(v−1)     Applying in y = x^x :    y = x^x  ⇒ u, v = x    y′ = 1×ln x×x^x  + x×1×x^(x−1)   y′ = ln x×x^x  + x^x   y′ = x^x (ln x + 1)
$$ \\ $$$${y}\:=\:{u}^{{v}} \:\Leftrightarrow\:{log}_{{u}} \:{y}\:=\:{v} \\ $$$$ \\ $$$${Changing}\:{the}\:{base}\:{of}\:{log}: \\ $$$$ \\ $$$${log}_{{u}} \:{y}\:=\:\frac{{ln}\:{y}}{{ln}\:{u}} \\ $$$$ \\ $$$$\frac{{ln}\:{y}}{{ln}\:{u}}\:=\:{v} \\ $$$$ \\ $$$$\frac{\frac{{y}'}{{y}}×{ln}\:{u}\:−\:{ln}\:{y}×\frac{{u}'}{{u}}}{{ln}^{\mathrm{2}} \:{u}}\:=\:{v}' \\ $$$$ \\ $$$$\frac{{ln}\:{u}×{y}'}{{y}}\:−\:\frac{{ln}\:{y}×{u}'}{{u}}\:=\:{v}'×{ln}^{\mathrm{2}} \:{u} \\ $$$$ \\ $$$${ln}\:{u}×{y}'×{u}\:−\:{ln}\:{y}×{u}'×{y}\:=\:{v}'×{ln}^{\mathrm{2}} \:{u}×{uy} \\ $$$$ \\ $$$${y}'\:=\:\frac{{v}'×{ln}^{\mathrm{2}} \:{u}×{uy}\:+\:{ln}\:{y}×{u}'×{y}}{{ln}\:{u}×{u}} \\ $$$$ \\ $$$${y}'\:=\:{v}'×{ln}\:{u}×{y}\:+\:\frac{{ln}\:{y}×{u}'×{y}}{{ln}\:{u}×{u}} \\ $$$$ \\ $$$${y}'\:=\:{v}'×{ln}\:{u}×\left({u}^{{v}} \right)\:+\:\frac{{ln}\:\left({u}^{{v}} \right)×{u}'×\left({u}^{{v}} \right)}{{ln}\:{u}×{u}} \\ $$$$ \\ $$$${y}'\:=\:{v}'×{ln}\:{u}×{u}^{{v}} \:+\:\frac{{v}×\left({ln}\:{u}\right)×{u}'×{u}^{{v}} }{{ln}\:{u}×{u}} \\ $$$$ \\ $$$${y}'\:=\:{v}'×{ln}\:{u}×{u}^{{v}} \:+\:{v}×{u}'×{u}^{{v}−\mathrm{1}} \\ $$$$ \\ $$$${Applying}\:{in}\:{y}\:=\:{x}^{{x}} : \\ $$$$ \\ $$$${y}\:=\:{x}^{{x}} \:\Rightarrow\:{u},\:{v}\:=\:{x} \\ $$$$ \\ $$$${y}'\:=\:\mathrm{1}×{ln}\:{x}×{x}^{{x}} \:+\:{x}×\mathrm{1}×{x}^{{x}−\mathrm{1}} \\ $$$${y}'\:=\:{ln}\:{x}×{x}^{{x}} \:+\:{x}^{{x}} \\ $$$${y}'\:=\:{x}^{{x}} \left({ln}\:{x}\:+\:\mathrm{1}\right) \\ $$
Answered by Tawa11 last updated on 16/Oct/25
Done in  Q111558
$$\mathrm{Done}\:\mathrm{in}\:\:\mathrm{Q111558} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *