Question Number 225098 by Ark55 last updated on 17/Oct/25

Answered by Rasheed.Sindhi last updated on 17/Oct/25

$$\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}=\mathrm{6} \\ $$$$\left(\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}=\mathrm{6}\right)^{\mathrm{2}} \\ $$$$\mathrm{25}{x}^{\mathrm{2}} +\mathrm{10}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{36} \\ $$$$\mathrm{25}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{26} \\ $$
Commented by fantastic last updated on 17/Oct/25

$${I}\:{think}\:{you}\:{have}\:{to}\:{reverse}\:{your} \\ $$$${assumption} \\ $$
Commented by Rasheed.Sindhi last updated on 17/Oct/25

$${If}\:{the}\:{question}\:{is}\:{meant}\:{as}: \\ $$$${Show}\:{that}\:\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}=\mathrm{6}\:{if}\:\mathrm{25}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{26} \\ $$$$\mathrm{25}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{26} \\ $$$$\mathrm{25}{x}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{5}{x}\right)\left(\frac{\mathrm{1}}{{x}}\right)+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{26}+\mathrm{2}\left(\mathrm{5}{x}\right)\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$\left(\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} =\mathrm{36} \\ $$$$\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}=\mathrm{6}\:\checkmark\:{or}\:\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}=−\mathrm{6} \\ $$
Commented by fantastic last updated on 17/Oct/25

$${yes} \\ $$
Answered by Rasheed.Sindhi last updated on 17/Oct/25

$$\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}=\mathrm{6} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} =\mathrm{6}{x}−\mathrm{1} \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{6}{x}−\mathrm{1}}{\mathrm{5}} \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\frac{\mathrm{5}}{\mathrm{6}{x}−\mathrm{1}} \\ $$$$\: \\ $$$$\mathrm{25}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{5}\left(\mathrm{6}{x}−\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{6}{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{5}\left(\mathrm{6}{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{5}}{\mathrm{6}{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{5}\left(\mathrm{36}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{1}\right)+\mathrm{5}}{\mathrm{6}{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{5}\left(\mathrm{36}\left(\frac{\mathrm{6}{x}−\mathrm{1}}{\mathrm{5}}\right)−\mathrm{12}{x}+\mathrm{1}\right)+\mathrm{5}}{\mathrm{6}{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{36}\left(\mathrm{6}{x}−\mathrm{1}\right)−\mathrm{60}{x}+\mathrm{5}+\mathrm{5}}{\mathrm{6}{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{156}{x}−\mathrm{26}}{\mathrm{6}{x}−\mathrm{1}}=\frac{\mathrm{26}\cancel{\left(\mathrm{6}{x}−\mathrm{1}\right)}}{\cancel{\mathrm{6}{x}−\mathrm{1}}}=\mathrm{26}\checkmark \\ $$