Menu Close

Question-225240




Question Number 225240 by Spillover last updated on 18/Oct/25
Answered by mr W last updated on 19/Oct/25
(a)  R=((∣3×5−4×4+6∣)/( (√(3^2 +4^2 ))))=1  ⇒(x−5)^2 +(y−4)^2 =1^2   (b)  y=sinh x=((e^x −e^(−x) )/2)  e^x −e^(−x) −2y=0  (e^x )^2 −2y(e^x )−1=0  ⇒e^x =y+(√(y^2 +1))     (− rejected)  ⇒x=ln (y+(√(y^2 +1)))  ⇒y=sinh^(−1)  x=ln (x+(√(x^2 +1)))
$$\left({a}\right) \\ $$$${R}=\frac{\mid\mathrm{3}×\mathrm{5}−\mathrm{4}×\mathrm{4}+\mathrm{6}\mid}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }}=\mathrm{1} \\ $$$$\Rightarrow\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} \\ $$$$\left({b}\right) \\ $$$${y}=\mathrm{sinh}\:{x}=\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}} \\ $$$${e}^{{x}} −{e}^{−{x}} −\mathrm{2}{y}=\mathrm{0} \\ $$$$\left({e}^{{x}} \right)^{\mathrm{2}} −\mathrm{2}{y}\left({e}^{{x}} \right)−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{e}^{{x}} ={y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:\:\left(−\:{rejected}\right) \\ $$$$\Rightarrow{x}=\mathrm{ln}\:\left({y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$\Rightarrow{y}=\mathrm{sinh}^{−\mathrm{1}} \:{x}=\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$
Commented by Spillover last updated on 25/Nov/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *