Menu Close

Question-225354




Question Number 225354 by ajfour last updated on 22/Oct/25
Commented by ajfour last updated on 22/Oct/25
If P(0,q) while origin centered  circle has radius R, then find  eq. of blue semicircle and hence    r, C, B.  example: R=5, q=3
$${If}\:{P}\left(\mathrm{0},{q}\right)\:{while}\:{origin}\:{centered} \\ $$$${circle}\:{has}\:{radius}\:{R},\:{then}\:{find} \\ $$$${eq}.\:{of}\:{blue}\:{semicircle}\:{and}\:{hence}\: \\ $$$$\:{r},\:{C},\:{B}. \\ $$$${example}:\:{R}=\mathrm{5},\:{q}=\mathrm{3} \\ $$
Answered by mr W last updated on 22/Oct/25
 APB is right angled.  B((√((2r)^2 −(R+q)^2 )), q)  (2r)^2 −(R+q)^2 +q^2 =R^2   2r^2 =R(R+q)  ⇒r=(√((R(R+q))/2))
$$\:{APB}\:{is}\:{right}\:{angled}. \\ $$$${B}\left(\sqrt{\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left({R}+{q}\right)^{\mathrm{2}} },\:{q}\right) \\ $$$$\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left({R}+{q}\right)^{\mathrm{2}} +{q}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\mathrm{2}{r}^{\mathrm{2}} ={R}\left({R}+{q}\right) \\ $$$$\Rightarrow{r}=\sqrt{\frac{{R}\left({R}+{q}\right)}{\mathrm{2}}} \\ $$
Commented by ajfour last updated on 22/Oct/25
Thats excellent, i hadnt noticed  this simplicity, sir.
$${Thats}\:{excellent},\:{i}\:{hadnt}\:{noticed} \\ $$$${this}\:{simplicity},\:{sir}. \\ $$
Commented by mr W last updated on 22/Oct/25
Commented by ajfour last updated on 23/Oct/25
https://youtu.be/OP_qBHuDuiY?si=9iv-qvuwvnrbRauO

Leave a Reply

Your email address will not be published. Required fields are marked *