Menu Close

Question-225397




Question Number 225397 by fantastic last updated on 24/Oct/25
Commented by fantastic last updated on 24/Oct/25
looks easy right?
$${looks}\:{easy}\:{right}? \\ $$
Answered by mr W last updated on 25/Oct/25
Commented by fantastic last updated on 25/Oct/25
i think i have to   practice alot to build  an approach like you.   TY sir
$${i}\:{think}\:{i}\:{have}\:{to}\: \\ $$$${practice}\:{alot}\:{to}\:{build} \\ $$$${an}\:{approach}\:{like}\:{you}.\: \\ $$$${TY}\:{sir} \\ $$
Commented by mr W last updated on 25/Oct/25
a=(dv/dt)=v(dv/dx)=−kv^2  with k=constant  (dv/dx)=−kv  (dv/v)=−kdx  ∫_v_0  ^v_1  (dv/v)=−k∫_0 ^h dx  ln v_1 −ln v_0 =−kh  ⇒k=((ln v_0 −ln v_1 )/h)  (dv/dt)=−(((ln v_0 −ln v_1 )/h))v^2   ∫_v_0  ^v_1  (dv/v^2 )=−(((ln v_0 −ln v_1 )/h))∫_0 ^T dt  −((1/v_1 )−(1/v_0 ))=−(((ln v_0 −ln v_1 )/h))T  ⇒T=(((v_0 −v_1 )h)/(v_0 v_1 (ln v_0 −ln v_1 )))   ✓
$${a}=\frac{{dv}}{{dt}}={v}\frac{{dv}}{{dx}}=−{kv}^{\mathrm{2}} \:{with}\:{k}={constant} \\ $$$$\frac{{dv}}{{dx}}=−{kv} \\ $$$$\frac{{dv}}{{v}}=−{kdx} \\ $$$$\int_{{v}_{\mathrm{0}} } ^{{v}_{\mathrm{1}} } \frac{{dv}}{{v}}=−{k}\int_{\mathrm{0}} ^{{h}} {dx} \\ $$$$\mathrm{ln}\:{v}_{\mathrm{1}} −\mathrm{ln}\:{v}_{\mathrm{0}} =−{kh} \\ $$$$\Rightarrow{k}=\frac{\mathrm{ln}\:{v}_{\mathrm{0}} −\mathrm{ln}\:{v}_{\mathrm{1}} }{{h}} \\ $$$$\frac{{dv}}{{dt}}=−\left(\frac{\mathrm{ln}\:{v}_{\mathrm{0}} −\mathrm{ln}\:{v}_{\mathrm{1}} }{{h}}\right){v}^{\mathrm{2}} \\ $$$$\int_{{v}_{\mathrm{0}} } ^{{v}_{\mathrm{1}} } \frac{{dv}}{{v}^{\mathrm{2}} }=−\left(\frac{\mathrm{ln}\:{v}_{\mathrm{0}} −\mathrm{ln}\:{v}_{\mathrm{1}} }{{h}}\right)\int_{\mathrm{0}} ^{{T}} {dt} \\ $$$$−\left(\frac{\mathrm{1}}{{v}_{\mathrm{1}} }−\frac{\mathrm{1}}{{v}_{\mathrm{0}} }\right)=−\left(\frac{\mathrm{ln}\:{v}_{\mathrm{0}} −\mathrm{ln}\:{v}_{\mathrm{1}} }{{h}}\right){T} \\ $$$$\Rightarrow{T}=\frac{\left({v}_{\mathrm{0}} −{v}_{\mathrm{1}} \right){h}}{{v}_{\mathrm{0}} {v}_{\mathrm{1}} \left(\mathrm{ln}\:{v}_{\mathrm{0}} −\mathrm{ln}\:{v}_{\mathrm{1}} \right)}\:\:\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *