Menu Close

Diffenrantial-Geometry-Christoffel-symbol-first-kind-and-second-kind-and-Chritoffel-symbol-satisfy-1-2-g-l-l-ijk-i-j-k-




Question Number 225488 by Lara2440 last updated on 30/Oct/25
Diffenrantial Geometry.....=∧=  Christoffel symbol   Γ_(σμν)  first kind and Γ_(μν) ^( σ)  second kind...  and Chritoffel symbol satisfy  Γ_(μν) ^( σ) =(1/2)g^(σl) Γ_(lμν)   Γ_(ijk)   {θ,ρ}∈{i,j,k}  Γ_(θθθ)  , Γ_(ρρρ)  , Γ_(θθρ)   Γ_(θρθ)  , Γ_(ρθρ)  , Γ_(ρθθ)   Γ_(θρρ)  , Γ_(ρρθ)   Γ_(jk) ^i =(1/2)g^(il) Γ_(ljk)   g_(μν) = ((( r^2 ),(      0)),(( 0),(r^2 sin^2 (θ))) )  (g_(μν) )^(−1) =g^(μν)   g^(μν) = ((( (1/r^2 )),(        0)),(( 0),(1/(r^2 sin^2 (θ)))) )  g_(θθ) =r^2 , g_(θρ) =0 , g_(ρθ) =0 , g_(ρρ) =r^2 sin^2 (θ)  ∂_θ g_(θθ) =0 , ∂_ρ g_(θθ) =0 , ∂_θ g_(θρ) =0 , ∂_ρ g_(θρ) =0  ∂_θ g_(ρθ) =0 , ∂_ρ g_(ρθ) =0 , ∂_θ g_(ρρ) =2r^2 sin(θ)cos(θ) , ∂_ρ g_(ρρ) =0  Γ_(abc) =(1/2)(∂_b ^  g_(ac) +∂_c g_(ab) −∂_a g_(bc) )  Γ_(θθθ) =(1/2)(∂_θ g_(θθ) +∂_θ g_(θθ) −∂_θ g_(θθ) )=0  Γ_(ρρρ) =(1/2)(∂_ρ g_(ρρ) +∂_ρ g_(ρρ) −∂_ρ g_(ρρ) )=0  Γ_(θρρ) =(1/2)(∂_ρ g_(θρ) +∂_ρ g_(θρ) −∂_θ g_(ρρ) )=−r^2 sin(θ)cos(θ)  Γ_(ρθρ) =(1/2)(∂_θ g_(ρρ) +∂_ρ g_(ρθ) −∂_ρ g_(θρ) )=r^2 sin(θ)cos(θ)  Γ_(ρθθ) =(1/2)(∂_θ g_(ρθ) +∂_θ g_(ρθ) −∂_ρ g_(θθ) )=0  Γ_(θρθ) =(1/2)(∂_ρ g_(θθ) +∂_θ g_(θρ) −∂_θ g_(ρθ) )=0  Γ_(θθρ) =(1/2)(∂_θ g_(θρ) +∂_ρ g_(θθ) −∂_θ g_(θρ) )=0  Γ_(ρρθ) =(1/2)(∂_ρ g_(ρθ) +∂_θ g_(ρρ) −∂_ρ g_(ρθ) )=r^2 sin(θ)cos(θ)  Γ_(jk) ^i =g^(il) Γ_(ljk)   g^(θθ) =(1/r^2 ) , g^(θρ) =0 , g^(ρθ) =0 , g^(ρρ) =(1/(r^2 sin^2 (θ)))  Γ_(θθ) ^θ =g^(θl) Γ_(lθθ) = { ((g^(θθ) Γ_(θθθ) =0)),((g^(θρ) Γ_(ρθθ) =0)) :}, Γ_(ρθ) ^θ =g^(θl) Γ_(lρθ) = { ((g^(θθ) Γ_(θρθ) =0)),((g^(θρ) Γ_(ρρθ) =0)) :} , Γ_(θρ) ^θ =g^(θl) Γ_(lθρ) = { ((g^(θθ) Γ_(θθρ) =0)),((g^(θρ) Γ_(ρθρ) =0)) :} , Γ_(ρρ) ^θ =g^(θl) Γ_(lρρ) = { ((g^(θθ) Γ_(θρρ) =−sin(θ)cos(θ))),((g^(θρ) Γ_(ρρρ) =0)) :}  Γ_(θθ) ^ρ =g^(ρl) Γ_(lθθ) = { ((g^(ρθ) Γ_(θθθ) =0)),((g^(ρρ) Γ_(ρθθ) =0)) :} , Γ_(ρθ) ^ρ =g^(ρl) Γ_(lρθ)  = { ((g^(ρθ) Γ_(θρθ) =0)),((g^(ρρ) Γ_(ρρθ) =cot(θ))) :}, Γ_(θρ) ^ρ =g^(ρl) Γ_(lθρ) = { ((g^(ρθ) Γ_(θθρ) =0)),((g^(ρρ) Γ_(ρθρ) =cot(θ))) :} , Γ_(ρρ) ^ρ =g^(ρl) Γ_(lρρ) = { ((g^(ρθ) Γ_(θρρ) =0)),((g^(ρρ) Γ_(ρρρ) =0)) :}  ∴Γ_(ρρ) ^θ =−sin(θ)cos(θ)     Γ_(μν) ^( ρ) =Γ_(νμ) ^ρ      Γ_(ρθ) ^ρ =Γ_(θρ) ^ρ =cot(θ)   R_(jkl) ^i =∂_k Γ_(jl) ^k −∂_l Γ_(jk) ^i +Γ_(km) ^i Γ_(jl) ^m −Γ_(lm) ^i Γ_(jk) ^m   R_(θθθ) ^θ  , R_(θρθ) ^θ  , R_(ρθθ) ^θ  , R_(ρρθ) ^θ  , R_(θρρ) ^θ  , R_(ρρρ) ^θ  , R_(ρθρ) ^θ  , R_(θρρ) ^θ   R_(θθθ) ^ρ  , R_(θρθ) ^ρ  , R_(ρθθ) ^ρ  , R_(ρρθ) ^ρ  , R_(θρρ) ^ρ  , R_(ρρρ) ^ρ  , R_(ρθρ) ^ρ  , R_(θρρ) ^ρ    and Riemann metric tensor have symmetries  R_(abcd) =−R_(bacd)   R_(abcd) =−R_(abdc)   R_(abcd) =R_(cdab)   Non-Zero Γ_(μν) ^( ρ)    Γ_(ρρ) ^( θ) =−sin(θ)cos(θ) , Γ_(ρθ) ^( ρ)  , Γ_(θρ) ^( ρ) =cot(θ)  {i,j,k,ℓ}∈{θ,ρ}  R_(ρθρ) ^θ =∂_θ Γ_(ρρ) ^θ −∂_ρ Γ_(ρθ) ^θ +Γ_(θm) ^( θ) Γ_(ρρ) ^m −Γ_(ρm) ^θ Γ_(ρθ) ^m   =sin^2 (θ)  R_(αρθρ) =g_(αμ) R_(ρθρ) ^μ   R_(θρθρ) =g_(θμ) R_(ρθρ) ^μ = { ((g_(θθ) R_(ρθρ) ^θ =r^2 sin^2 (θ))),((g_(θρ) R_(ρθρ) ^ρ =0)) :}  R_(θρθρ) =r^2 sin^2 (θ)  ∴ R_(ρθρ) ^θ =sin^2 (θ) , R_(θρθρ) =r^2 sin^2 (θ)  ∼2-dimensional Riemann Manifold∼  R_(abcd) =K(g_(ac) g_(bd) −g_(ad) g_(bc) )  R_(μν) ^(Ricci) =Kg_(μν)   K is gaussian curvature  aka K=((detII_p )/(det I_p ))=((LM−N^2 )/(EG−F^2 ))  Q225479
$$\mathrm{Diffenrantial}\:\mathrm{Geometry}…..=\wedge= \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\: \\ $$$$\Gamma_{\sigma\mu\nu} \:\mathrm{first}\:\mathrm{kind}\:\mathrm{and}\:\Gamma_{\mu\nu} ^{\:\sigma} \:\mathrm{second}\:\mathrm{kind}… \\ $$$$\mathrm{and}\:\mathrm{Chritoffel}\:\mathrm{symbol}\:\mathrm{satisfy} \\ $$$$\Gamma_{\mu\nu} ^{\:\sigma} =\frac{\mathrm{1}}{\mathrm{2}}{g}^{\sigma{l}} \Gamma_{{l}\mu\nu} \\ $$$$\Gamma_{{ijk}} \:\:\left\{\theta,\rho\right\}\in\left\{{i},{j},{k}\right\} \\ $$$$\Gamma_{\theta\theta\theta} \:,\:\Gamma_{\rho\rho\rho} \:,\:\Gamma_{\theta\theta\rho} \\ $$$$\Gamma_{\theta\rho\theta} \:,\:\Gamma_{\rho\theta\rho} \:,\:\Gamma_{\rho\theta\theta} \\ $$$$\Gamma_{\theta\rho\rho} \:,\:\Gamma_{\rho\rho\theta} \\ $$$$\Gamma_{{jk}} ^{{i}} =\frac{\mathrm{1}}{\mathrm{2}}{g}^{{il}} \Gamma_{{ljk}} \\ $$$${g}_{\mu\nu} =\begin{pmatrix}{\:{r}^{\mathrm{2}} }&{\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\end{pmatrix} \\ $$$$\left({g}_{\mu\nu} \right)^{−\mathrm{1}} ={g}^{\mu\nu} \\ $$$${g}^{\mu\nu} =\begin{pmatrix}{\:\frac{\mathrm{1}}{{r}^{\mathrm{2}} }}&{\:\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}}\end{pmatrix} \\ $$$${g}_{\theta\theta} ={r}^{\mathrm{2}} ,\:{g}_{\theta\rho} =\mathrm{0}\:,\:{g}_{\rho\theta} =\mathrm{0}\:,\:{g}_{\rho\rho} ={r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\partial_{\theta} {g}_{\theta\theta} =\mathrm{0}\:,\:\partial_{\rho} {g}_{\theta\theta} =\mathrm{0}\:,\:\partial_{\theta} {g}_{\theta\rho} =\mathrm{0}\:,\:\partial_{\rho} {g}_{\theta\rho} =\mathrm{0} \\ $$$$\partial_{\theta} {g}_{\rho\theta} =\mathrm{0}\:,\:\partial_{\rho} {g}_{\rho\theta} =\mathrm{0}\:,\:\partial_{\theta} {g}_{\rho\rho} =\mathrm{2}{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right)\:,\:\partial_{\rho} {g}_{\rho\rho} =\mathrm{0} \\ $$$$\Gamma_{{abc}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{{b}} ^{\:} {g}_{{ac}} +\partial_{{c}} {g}_{{ab}} −\partial_{{a}} {g}_{{bc}} \right) \\ $$$$\Gamma_{\theta\theta\theta} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\theta} {g}_{\theta\theta} +\partial_{\theta} {g}_{\theta\theta} −\partial_{\theta} {g}_{\theta\theta} \right)=\mathrm{0} \\ $$$$\Gamma_{\rho\rho\rho} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\rho} {g}_{\rho\rho} +\partial_{\rho} {g}_{\rho\rho} −\partial_{\rho} {g}_{\rho\rho} \right)=\mathrm{0} \\ $$$$\Gamma_{\theta\rho\rho} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\rho} {g}_{\theta\rho} +\partial_{\rho} {g}_{\theta\rho} −\partial_{\theta} {g}_{\rho\rho} \right)=−{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right) \\ $$$$\Gamma_{\rho\theta\rho} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\theta} {g}_{\rho\rho} +\partial_{\rho} {g}_{\rho\theta} −\partial_{\rho} {g}_{\theta\rho} \right)={r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right) \\ $$$$\Gamma_{\rho\theta\theta} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\theta} {g}_{\rho\theta} +\partial_{\theta} {g}_{\rho\theta} −\partial_{\rho} {g}_{\theta\theta} \right)=\mathrm{0} \\ $$$$\Gamma_{\theta\rho\theta} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\rho} {g}_{\theta\theta} +\partial_{\theta} {g}_{\theta\rho} −\partial_{\theta} {g}_{\rho\theta} \right)=\mathrm{0} \\ $$$$\Gamma_{\theta\theta\rho} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\theta} {g}_{\theta\rho} +\partial_{\rho} {g}_{\theta\theta} −\partial_{\theta} {g}_{\theta\rho} \right)=\mathrm{0} \\ $$$$\Gamma_{\rho\rho\theta} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\rho} {g}_{\rho\theta} +\partial_{\theta} {g}_{\rho\rho} −\partial_{\rho} {g}_{\rho\theta} \right)={r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right) \\ $$$$\Gamma_{{jk}} ^{{i}} ={g}^{{il}} \Gamma_{{ljk}} \\ $$$${g}^{\theta\theta} =\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:,\:{g}^{\theta\rho} =\mathrm{0}\:,\:{g}^{\rho\theta} =\mathrm{0}\:,\:{g}^{\rho\rho} =\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)} \\ $$$$\Gamma_{\theta\theta} ^{\theta} ={g}^{\theta{l}} \Gamma_{{l}\theta\theta} =\begin{cases}{{g}^{\theta\theta} \Gamma_{\theta\theta\theta} =\mathrm{0}}\\{{g}^{\theta\rho} \Gamma_{\rho\theta\theta} =\mathrm{0}}\end{cases},\:\Gamma_{\rho\theta} ^{\theta} ={g}^{\theta{l}} \Gamma_{{l}\rho\theta} =\begin{cases}{{g}^{\theta\theta} \Gamma_{\theta\rho\theta} =\mathrm{0}}\\{{g}^{\theta\rho} \Gamma_{\rho\rho\theta} =\mathrm{0}}\end{cases}\:,\:\Gamma_{\theta\rho} ^{\theta} ={g}^{\theta{l}} \Gamma_{{l}\theta\rho} =\begin{cases}{{g}^{\theta\theta} \Gamma_{\theta\theta\rho} =\mathrm{0}}\\{{g}^{\theta\rho} \Gamma_{\rho\theta\rho} =\mathrm{0}}\end{cases}\:,\:\Gamma_{\rho\rho} ^{\theta} ={g}^{\theta{l}} \Gamma_{{l}\rho\rho} =\begin{cases}{{g}^{\theta\theta} \Gamma_{\theta\rho\rho} =−\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right)}\\{{g}^{\theta\rho} \Gamma_{\rho\rho\rho} =\mathrm{0}}\end{cases} \\ $$$$\Gamma_{\theta\theta} ^{\rho} ={g}^{\rho{l}} \Gamma_{{l}\theta\theta} =\begin{cases}{{g}^{\rho\theta} \Gamma_{\theta\theta\theta} =\mathrm{0}}\\{{g}^{\rho\rho} \Gamma_{\rho\theta\theta} =\mathrm{0}}\end{cases}\:,\:\Gamma_{\rho\theta} ^{\rho} ={g}^{\rho{l}} \Gamma_{{l}\rho\theta} \:=\begin{cases}{{g}^{\rho\theta} \Gamma_{\theta\rho\theta} =\mathrm{0}}\\{{g}^{\rho\rho} \Gamma_{\rho\rho\theta} =\mathrm{cot}\left(\theta\right)}\end{cases},\:\Gamma_{\theta\rho} ^{\rho} ={g}^{\rho{l}} \Gamma_{{l}\theta\rho} =\begin{cases}{{g}^{\rho\theta} \Gamma_{\theta\theta\rho} =\mathrm{0}}\\{{g}^{\rho\rho} \Gamma_{\rho\theta\rho} =\mathrm{cot}\left(\theta\right)}\end{cases}\:,\:\Gamma_{\rho\rho} ^{\rho} ={g}^{\rho{l}} \Gamma_{{l}\rho\rho} =\begin{cases}{{g}^{\rho\theta} \Gamma_{\theta\rho\rho} =\mathrm{0}}\\{{g}^{\rho\rho} \Gamma_{\rho\rho\rho} =\mathrm{0}}\end{cases} \\ $$$$\therefore\Gamma_{\rho\rho} ^{\theta} =−\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right) \\ $$$$\:\:\:\Gamma_{\mu\nu} ^{\:\rho} =\Gamma_{\nu\mu} ^{\rho} \\ $$$$\:\:\:\Gamma_{\rho\theta} ^{\rho} =\Gamma_{\theta\rho} ^{\rho} =\mathrm{cot}\left(\theta\right) \\ $$$$\:{R}_{{jkl}} ^{{i}} =\partial_{{k}} \Gamma_{{jl}} ^{{k}} −\partial_{{l}} \Gamma_{{jk}} ^{{i}} +\Gamma_{{km}} ^{{i}} \Gamma_{{jl}} ^{{m}} −\Gamma_{{lm}} ^{{i}} \Gamma_{{jk}} ^{{m}} \\ $$$${R}_{\theta\theta\theta} ^{\theta} \:,\:{R}_{\theta\rho\theta} ^{\theta} \:,\:{R}_{\rho\theta\theta} ^{\theta} \:,\:{R}_{\rho\rho\theta} ^{\theta} \:,\:{R}_{\theta\rho\rho} ^{\theta} \:,\:{R}_{\rho\rho\rho} ^{\theta} \:,\:{R}_{\rho\theta\rho} ^{\theta} \:,\:{R}_{\theta\rho\rho} ^{\theta} \\ $$$${R}_{\theta\theta\theta} ^{\rho} \:,\:{R}_{\theta\rho\theta} ^{\rho} \:,\:{R}_{\rho\theta\theta} ^{\rho} \:,\:{R}_{\rho\rho\theta} ^{\rho} \:,\:{R}_{\theta\rho\rho} ^{\rho} \:,\:{R}_{\rho\rho\rho} ^{\rho} \:,\:{R}_{\rho\theta\rho} ^{\rho} \:,\:{R}_{\theta\rho\rho} ^{\rho} \: \\ $$$$\mathrm{and}\:\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor}\:\mathrm{have}\:\mathrm{symmetries} \\ $$$${R}_{{abcd}} =−{R}_{{bacd}} \\ $$$${R}_{{abcd}} =−{R}_{{abdc}} \\ $$$${R}_{{abcd}} ={R}_{{cdab}} \\ $$$$\mathrm{Non}-\mathrm{Zero}\:\Gamma_{\mu\nu} ^{\:\rho} \: \\ $$$$\Gamma_{\rho\rho} ^{\:\theta} =−\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right)\:,\:\Gamma_{\rho\theta} ^{\:\rho} \:,\:\Gamma_{\theta\rho} ^{\:\rho} =\mathrm{cot}\left(\theta\right) \\ $$$$\left\{{i},{j},{k},\ell\right\}\in\left\{\theta,\rho\right\} \\ $$$${R}_{\rho\theta\rho} ^{\theta} =\partial_{\theta} \Gamma_{\rho\rho} ^{\theta} −\partial_{\rho} \Gamma_{\rho\theta} ^{\theta} +\Gamma_{\theta{m}} ^{\:\theta} \Gamma_{\rho\rho} ^{{m}} −\Gamma_{\rho{m}} ^{\theta} \Gamma_{\rho\theta} ^{{m}} \\ $$$$=\mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$${R}_{\alpha\rho\theta\rho} =\mathrm{g}_{\alpha\mu} {R}_{\rho\theta\rho} ^{\mu} \\ $$$${R}_{\theta\rho\theta\rho} =\mathrm{g}_{\theta\mu} {R}_{\rho\theta\rho} ^{\mu} =\begin{cases}{{g}_{\theta\theta} {R}_{\rho\theta\rho} ^{\theta} ={r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\\{{g}_{\theta\rho} {R}_{\rho\theta\rho} ^{\rho} =\mathrm{0}}\end{cases} \\ $$$${R}_{\theta\rho\theta\rho} ={r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\therefore\:{R}_{\rho\theta\rho} ^{\theta} =\mathrm{sin}^{\mathrm{2}} \left(\theta\right)\:,\:{R}_{\theta\rho\theta\rho} ={r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\sim\mathrm{2}-\mathrm{dimensional}\:\mathrm{Riemann}\:\mathrm{Manifold}\sim \\ $$$${R}_{{abcd}} ={K}\left({g}_{{ac}} {g}_{{bd}} −{g}_{{ad}} {g}_{{bc}} \right) \\ $$$${R}_{\mu\nu} ^{\mathrm{Ricci}} ={Kg}_{\mu\nu} \\ $$$${K}\:\mathrm{is}\:\mathrm{gaussian}\:\mathrm{curvature}\:\:\mathrm{aka}\:{K}=\frac{\mathrm{det}\mathbb{II}_{{p}} }{\mathrm{det}\:\mathbb{I}_{{p}} }=\frac{{LM}−{N}^{\mathrm{2}} }{{EG}−{F}^{\mathrm{2}} } \\ $$$${Q}\mathrm{225479} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *