Question Number 225506 by fantastic last updated on 31/Oct/25

Commented by fantastic last updated on 31/Oct/25

$${youre}\:{right}\:{sir} \\ $$
Commented by MirHasibulHossain last updated on 01/Nov/25

$$\mathrm{where}\:\mathrm{are}\:\mathrm{you}\:\mathrm{from}? \\ $$
Answered by mr W last updated on 31/Oct/25

Commented by mr W last updated on 31/Oct/25

$${N}_{\mathrm{2}} ={f}_{\mathrm{1}} ={kN}_{\mathrm{1}} \\ $$$${mg}={N}_{\mathrm{1}} +{f}_{\mathrm{2}} ={N}_{\mathrm{1}} +{kN}_{\mathrm{2}} ={N}_{\mathrm{1}} +{k}^{\mathrm{2}} {N}_{\mathrm{1}} \\ $$$$\Rightarrow{N}_{\mathrm{1}} =\frac{{mg}}{\mathrm{1}+{k}^{\mathrm{2}} }\: \\ $$$$\Rightarrow{f}_{\mathrm{1}} =\frac{{kmg}}{\mathrm{1}+{k}^{\mathrm{2}} },\:{f}_{\mathrm{2}} =\frac{{k}^{\mathrm{2}} {mg}}{\mathrm{1}+{k}^{\mathrm{2}} } \\ $$$$\tau=\left({f}_{\mathrm{1}} +{f}_{\mathrm{2}} \right){R}=\frac{{k}\left(\mathrm{1}+{k}\right){mgR}}{\mathrm{1}+{k}^{\mathrm{2}} } \\ $$$$\frac{{mR}^{\mathrm{2}} }{\mathrm{2}}\alpha=\tau=\frac{{k}\left(\mathrm{1}+{k}\right){mgR}}{\mathrm{1}+{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\alpha=\frac{\mathrm{2}{k}\left(\mathrm{1}+{k}\right){g}}{\left(\mathrm{1}+{k}^{\mathrm{2}} \right){R}} \\ $$$$\theta=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}\alpha}=\frac{\left(\mathrm{1}+{k}^{\mathrm{2}} \right){R}\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{4}{k}\left(\mathrm{1}+{k}\right){g}} \\ $$$$\Rightarrow{n}=\frac{\theta}{\mathrm{2}\pi}=\frac{\left(\mathrm{1}+{k}^{\mathrm{2}} \right){R}\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{8}\pi{k}\left(\mathrm{1}+{k}\right){g}}\:\checkmark \\ $$
Commented by ajfour last updated on 02/Nov/25
https://youtu.be/p-g2WKPFhXE?si=BjwljtbJIyClXtjt
Commented by fantastic last updated on 02/Nov/25
https://youtu.be/cAG1ijYC_y0?si=sbHvuRy60vhkW2oS
Commented by fantastic last updated on 02/Nov/25

$$\left(\mathrm{1}+{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} +\left({R}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} =\mathrm{4}{R} \\ $$$${R}=\mathrm{4} \\ $$
Commented by ajfour last updated on 02/Nov/25
what i shared is a better question. Your
shared one is damn easy!
Commented by fantastic last updated on 02/Nov/25

$${or} \\ $$$$\left(\mathrm{1},\mathrm{0}\right)\:{and}\:\left({R},{R}\right) \\ $$$$\sqrt{\left(\mathrm{1}−{R}\right)^{\mathrm{2}} +\left(\mathrm{0}−{R}\right)^{\mathrm{2}} }=\mathrm{1}+{R} \\ $$$${R}^{\mathrm{2}} =\mathrm{4}{R} \\ $$$${R}\Rightarrow\mathrm{4} \\ $$
Commented by fantastic last updated on 02/Nov/25

$${yes} \\ $$
Commented by fantastic last updated on 02/Nov/25

$${i}\:{havent}\:{seen}\:{your}\:{full}\:{video}. \\ $$$${i}\:{will}\:{try}\:{to}\:{give}\:{my}\:{best} \\ $$$${will}\:{also}\:{share}\:{my}\:{approach}/{solution} \\ $$
Commented by fantastic last updated on 02/Nov/25

Commented by fantastic last updated on 02/Nov/25

$${R}^{\mathrm{2}} +{x}^{\mathrm{2}} =\left({R}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${x}=\sqrt{\mathrm{1}+\mathrm{2}{R}} \\ $$$$\left(\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{2}{R}}\right)^{\mathrm{2}} +\left({R}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} =\left({R}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}+\cancel{\mathrm{1}}+\cancel{\mathrm{2}{R}}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{2}{R}}+\cancel{{R}^{\mathrm{2}} }+\mathrm{3}−\mathrm{2}\sqrt{\mathrm{3}}{R}=\cancel{{R}^{\mathrm{2}} }+\cancel{\mathrm{1}}+\cancel{\mathrm{2}{R}} \\ $$$$\mathrm{4}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{2}{R}}=\mathrm{2}\sqrt{\mathrm{3}}{R} \\ $$$$\mathrm{2}+\sqrt{\mathrm{1}+\mathrm{2}{R}}=\sqrt{\mathrm{3}}{R} \\ $$$$\mathrm{1}+\mathrm{2}{R}=\mathrm{3}{R}^{\mathrm{2}} +\mathrm{4}−\mathrm{4}\sqrt{\mathrm{3}}{R} \\ $$$$\mathrm{3}{R}^{\mathrm{2}} −{R}\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{2}\right)+\mathrm{3}=\mathrm{0} \\ $$$${R}=\frac{\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{2}\right)\pm\sqrt{\mathrm{48}+\mathrm{4}+\mathrm{16}\sqrt{\mathrm{3}}−\mathrm{36}}}{\mathrm{6}} \\ $$$$=\frac{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{3}}\pm\frac{\mathrm{2}\sqrt{\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)}}{\mathrm{3}} \\ $$