Question Number 225604 by mr W last updated on 04/Nov/25

Commented by mr W last updated on 04/Nov/25

$${An}\:{uniform}\:{cylinder}\:{with}\:{radius}\:{R} \\ $$$${is}\:{spinned}\:{about}\:{its}\:{axis}\:{to}\:{the} \\ $$$${angular}\:{velocity}\:\omega_{\mathrm{0}} \:{and}\:{then}\:{placed} \\ $$$${on}\:{an}\:{inclined}\:{plane}\:{as}\:{shown}.\:{The} \\ $$$${coefficient}\:{of}\:{friction}\:{between}\:{the} \\ $$$${cylinder}\:{and}\:{the}\:{incline}\:{is}\:\mu.\:{How} \\ $$$${many}\:{turns}\:{and}\:{in}\:{what}\:{time}\:{will} \\ $$$${the}\:{cylinder}\:{accomplish}\:{before}\:{it}\: \\ $$$${stops}\:{momentarily}? \\ $$
Commented by ajfour last updated on 04/Nov/25
https://youtu.be/Xov4wK7obqg?si=3mTg8aBbBs1iBE0B
https://youtu.be/7Vpoao4rYxQ?si=dexPW13XLkYO-vh4
Answered by fantastic last updated on 04/Nov/25

Commented by fantastic last updated on 04/Nov/25

$${N}={mg}\mathrm{cos}\:\theta \\ $$$${friction}\:{acting}\:{backwards}. \\ $$$$\therefore\:{backward}\:{force}: \\ $$$${Mg}\mathrm{sin}\:\theta+\mu{Mg}\mathrm{cos}\:\theta \\ $$$${Mg}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right) \\ $$$$\tau={RMg}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right) \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\alpha={RMg}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right) \\ $$$$\alpha=\frac{\mathrm{2}{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right)}{{R}} \\ $$$$\Rightarrow\theta=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}\alpha}=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right)} \\ $$$${n}=\frac{\theta}{\mathrm{2}\pi}=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{8}\pi{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right)} \\ $$
Commented by ajfour last updated on 04/Nov/25

$${acceleration}\:{until}\:{it}\:{slips}\:{since} \\ $$$${start}\:\boldsymbol{{a}}. \\ $$$${m}\boldsymbol{{a}}=\mu{mg}\mathrm{cos}\:\alpha−{mg}\mathrm{sin}\:\alpha \\ $$$$\boldsymbol{{a}}=\left(\mu\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha\right)\boldsymbol{{g}} \\ $$$$\left(\mu{mg}\mathrm{cos}\:\alpha\right){R}=\frac{{mR}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{{d}^{\mathrm{2}} \omega}{{dt}^{\mathrm{2}} }\right) \\ $$$$\left(\frac{{d}^{\mathrm{2}} \omega}{{dt}^{\mathrm{2}} }\right){T}=\omega_{\mathrm{0}} −\omega_{{roll}} =\left(\frac{\mathrm{2}\mu{g}\mathrm{cos}\:\alpha}{{R}}\right){T} \\ $$$${T}=\frac{\left(\omega_{\mathrm{0}} −\omega_{{roll}} \right){R}}{\mathrm{2}\mu{g}\mathrm{cos}\:\alpha} \\ $$$$\omega_{{roll}} {R}=\boldsymbol{{a}}{T} \\ $$$$\left(\mathrm{2}\mu{g}\mathrm{cos}\:\alpha+\boldsymbol{{a}}\right)\boldsymbol{{T}}=\omega_{\mathrm{0}} {R} \\ $$$$\boldsymbol{{T}}=\frac{\boldsymbol{\omega}_{\mathrm{0}} \boldsymbol{{R}}/\boldsymbol{{g}}}{\left(\mathrm{3}\boldsymbol{\mu}\right)\boldsymbol{{cos}}\:\boldsymbol{\alpha}−\boldsymbol{{sin}}\:\boldsymbol{\alpha}} \\ $$
Answered by mahdipoor last updated on 04/Nov/25

$$\mathrm{by}\:\mathrm{energy}\:\mathrm{method}\:: \\ $$$$\mathrm{mg}\Delta\mathrm{h}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{I}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{m}\left(\mathrm{v}_{\mathrm{cg}} \right)^{\mathrm{2}} \\ $$$$\mathrm{no}\:\mathrm{slip}\:\Rightarrow\:\mathrm{v}_{\mathrm{cg}} =\mathrm{R}\omega\:\:\:,\:\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{mR}^{\mathrm{2}} \\ $$$$\Delta\mathrm{h}=\frac{\mathrm{0}.\mathrm{5}\omega^{\mathrm{2}} \left(\mathrm{I}+\mathrm{mR}^{\mathrm{2}} \right)}{\mathrm{mg}}=\mathrm{0}.\mathrm{75}\frac{\omega^{\mathrm{2}} \mathrm{R}^{\mathrm{2}} }{\mathrm{g}} \\ $$$$\mathrm{d}=\mathrm{n}\left(\mathrm{2}\pi\mathrm{R}\right)=\Delta\mathrm{h}/\mathrm{sin}\theta \\ $$$$\Rightarrow\mathrm{n}=\mathrm{0}.\mathrm{375}\frac{\omega^{\mathrm{2}} \mathrm{R}}{\pi\mathrm{gsin}\theta}\:\:\:\:\left(\mathrm{true}\right) \\ $$$$\mathrm{mg}.\mathrm{sin}\left(\theta\right)=\mathrm{f}_{\mathrm{k}} \:\:\:\:\:\left(\mathrm{fals}\right) \\ $$$$\Rightarrow\mathrm{f}_{\mathrm{k}} \mathrm{R}=\mathrm{Rmgsin}\left(\theta\right)=\mathrm{I}\alpha \\ $$$$\alpha=\frac{\mathrm{Rmg}.\mathrm{sin}\theta}{\mathrm{0}.\mathrm{5mR}^{\mathrm{2}} }=\frac{\omega−\mathrm{0}}{\Delta\mathrm{t}}\:\Rightarrow\:\Delta\mathrm{t}=\frac{\mathrm{0}.\mathrm{5}\omega\mathrm{R}}{\mathrm{gsin}\theta}\:\:\:\left(\mathrm{fals}\right) \\ $$
Commented by fantastic last updated on 04/Nov/25

$${am}\:{i}\:{right}\:{sir}? \\ $$$${pls}\:{tell} \\ $$
Commented by mahdipoor last updated on 04/Nov/25

$$ \\ $$$$\mathrm{W}_{\mathrm{t}} =\mathrm{mgsin}\theta\:\:\checkmark \\ $$$$\mathrm{W}_{\mathrm{n}} =\mathrm{mgcos}\theta\:\:\checkmark \\ $$$$\mathrm{f}_{\mathrm{k}} =?\:\:\left(\mathrm{no}\:\mathrm{slip}\::\:\mathrm{just}\:\mathrm{sure}\:\mathrm{abuot}\:\mid\mathrm{f}_{\mathrm{k}} \mid\leqslant\mathrm{N}\mu\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{3}\:\mathrm{general}\:\mathrm{eq}\::\:\left(\mathrm{CM}\::\:\mathrm{center}\:\mathrm{of}\:\mathrm{mass}\right) \\ $$$$\boldsymbol{\mathrm{F}}=\mathrm{m}\boldsymbol{\mathrm{a}}_{\mathrm{CM}} \Rightarrow\begin{cases}{\mathrm{W}_{\mathrm{t}} +\mathrm{f}_{\mathrm{k}} =\mathrm{ma}_{\mathrm{t}} }\\{−\mathrm{W}_{\mathrm{n}} +\mathrm{N}=\mathrm{ma}_{\mathrm{n}} }\end{cases} \\ $$$$\Sigma\mathrm{M}_{\mathrm{CM}} =\mathrm{I}_{\mathrm{CM}} \alpha\:\:\left(\circlearrowleft+\right)\Rightarrow\begin{cases}{\mathrm{f}_{\mathrm{k}} \mathrm{R}=\mathrm{I}\alpha}\end{cases} \\ $$$$\mathrm{no}\:\mathrm{slip}\:: \\ $$$$−\mathrm{v}_{\mathrm{t},\mathrm{CM}} =\omega\mathrm{R}\:\:\Rightarrow\:\mathrm{a}_{\mathrm{t}} =−\alpha\mathrm{R}=\frac{−\mathrm{f}_{\mathrm{k}} \mathrm{R}^{\mathrm{2}} }{\mathrm{I}} \\ $$$$\mathrm{and}\:: \\ $$$$\mathrm{v}_{\mathrm{n},\mathrm{CM}} =\mathrm{0}\:\:\Rightarrow\:\mathrm{a}_{\mathrm{n}} =\mathrm{0} \\ $$$$\:\mathrm{so}\:\rightarrow \\ $$$$\mathrm{N}\:=\:\mathrm{W}_{\mathrm{n}} =\mathrm{mgcos}\theta \\ $$$$\mathrm{W}_{\mathrm{t}} =−\mathrm{f}_{\mathrm{k}} \left(\frac{\mathrm{mR}^{\mathrm{2}} }{\mathrm{I}}+\mathrm{1}\right)=−\mathrm{3f}_{\mathrm{k}} \\ $$$$\mathrm{f}_{\mathrm{k}} =−\frac{\mathrm{mgsin}\theta}{\mathrm{3}}\:\mathrm{and}\:\mathrm{not}\:=\mu\mathrm{mgcos}\theta\:\:\mathrm{or}\:=\mathrm{mgsin}\theta \\ $$$$\mathrm{so}\:\:\:\alpha=\frac{\mathrm{f}_{\mathrm{k}} \mathrm{R}}{\mathrm{I}}=\frac{−\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{gsin}\theta}{\mathrm{R}}\right) \\ $$$$\mathrm{t}_{\mathrm{stop}} =\frac{\mathrm{0}−\omega_{\mathrm{0}} }{\alpha}=\mathrm{1}.\mathrm{5}\frac{\mathrm{R}\omega_{\mathrm{0}} }{\mathrm{gsin}\theta}\:\:\therefore \\ $$$$\theta_{\mathrm{stop}} =\frac{\omega_{\mathrm{0}} }{\mathrm{2}}\mathrm{t}_{\mathrm{stop}} =\mathrm{0}.\mathrm{75}\frac{\mathrm{R}\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{gsin}\theta}=\mathrm{n}_{\mathrm{stop}} \left(\mathrm{2}\pi\right) \\ $$$$\Rightarrow\mathrm{n}_{\mathrm{stop}} =\frac{\mathrm{0}.\mathrm{375}}{\pi}.\frac{\mathrm{R}\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{gsin}\theta}\:\therefore\:\:\left(\mathrm{same}\:\mathrm{answer}\:\mathrm{by}\:\mathrm{energy}\:\mathrm{method}\right) \\ $$
Commented by mahdipoor last updated on 04/Nov/25

$$\mathrm{I}\:\mathrm{assumed}\:\mathrm{we}\:\mathrm{didnt}\:\mathrm{slip}\:… \\ $$
Commented by mr W last updated on 05/Nov/25

$${thanks}\:{for}\:{trying}\:{sirs}! \\ $$$${i}\:{think}\:{the}\:{question}\:{is}\:{a}\:{little}\:{bit} \\ $$$${more}\:{complex}\:{than}\:{it}\:{looks}\:{like}. \\ $$$${i}'{ll}\:{post}\:{my}\:{attempt}\:{later}. \\ $$
Commented by fantastic last updated on 04/Nov/25

$${can}\:{you}\:{give}\:{us}\:{any}\:{hint} \\ $$$${what}\:{we}\:{missed}\:{sir}? \\ $$$${so}\:{that}\:{we}\:{can}\:{consider} \\ $$$${that} \\ $$
Answered by mr W last updated on 05/Nov/25

$${at}\:{first}\:{we}\:{assume}\:{that}\:{the}\:{incline} \\ $$$${is}\:{rough}\:{enough}.\:{otherwise},\:\:{if}\:\mu\:{is}\: \\ $$$${very}\:{small},\:{the}\:{grip}\:{between}\:{the} \\ $$$${cylinder}\:{and}\:{the}\:{incline}\:{is}\:{weak} \\ $$$${and}\:{the}\:{cylinder}\:{will}\:{just}\:“{slide}''\: \\ $$$${down}\:{along}\:{the}\:{incline},\:{in}\:{spite}\:{of} \\ $$$${its}\:{initial}\:{rotation}\:{upwards}. \\ $$$${in}\:{this}\:{case}\:{the}\:{cylinder}\:{woulde} \\ $$$${never}\:{stop},\:{not}\:{even}\:{momentarily}. \\ $$$${when}\:\mu\:{is}\:{large}\:{enough},\:{the}\:{cylinder} \\ $$$${will}\:{make}\:{following}\:{motion}: \\ $$
Commented by mr W last updated on 06/Nov/25
![phase 1: t=0 to t_1 at t=0 the cylinder has angular velocity, but no translational velocity, therefore it will roll and slip simultaneously, till its translational velocity matches its angular velocity, i.e. v_1 =ω_1 R. after that it will roll purely. phase 2: t=t_1 to t_2 the cylinder rolls without slipping till it reaches its highest position and stops momentarily. then the cyclinder begins to roll down the incline backwards. phase 1: f=μN=μMg cos θ Ma=f−Mg sin θ=Mg(μ cos θ−sin θ) ⇒a=g(μ cos θ−sin θ) a=(v_1 /t_1 ) ⇒t_1 =(v_1 /(g(μ cos θ−sin θ))) Iα=fR ((MR^2 )/2)α=μMg cos θR ⇒α=((2μg cos θ)/R) α=((w_0 −ω_1 )/t_1 ) ⇒t_1 =(((ω_0 −ω_1 )R)/(2μg cos θ)) (((ω_0 −ω_1 )R)/(2μg cos θ))=(v_1 /(g(μ cos θ−sin θ))) with v_1 =ω_1 R (((ω_0 −ω_1 )R)/(2μg cos θ))=((ω_1 R)/(g(μ cos θ−sin θ))) ((ω_0 −ω_1 )/(2μ cos θ))=(ω_1 /(μ cos θ−sin θ)) ⇒ω_1 =(((μ−tan θ)ω_0 )/(3μ−tan θ)) rotation angle in phase 1: φ_1 =((ω_0 ^2 −ω_1 ^2 )/(2α)) =((ω_0 ^2 R)/(4μg cos θ))(1+((μ−tan θ)/(3μ−tan θ)))(1−((μ−tan θ)/(3μ−tan θ))) =(((2μ−tan θ)ω_0 ^2 R)/(g(3μ−tan θ)^2 cos θ)) t_1 =(((ω_0 −ω_1 )R)/(2μg cos θ)) =((ω_0 R)/(2μg cos θ))(1−((μ−tan θ)/(3μ−tan θ))) =((ω_0 R)/(g(3μ−tan θ) cos θ)) phase 2: energy conservation: (1/2)(((MR^2 ω_1 ^2 )/2)+Mv_1 ^2 )=Mgφ_2 R sin θ φ_2 =((3ω_1 ^2 R)/(4g sin θ)) =((3(μ−tan θ)^2 ω_0 ^2 R)/(4g(3μ−tan θ)^2 sin θ)) or: ((MR^2 )/2)α=−fR Ma=f−Mg sin θ since a=αR, MαR^2 =fR−MgR sin θ ((MR^2 )/2)α+MαR^2 =MgR sin θ ⇒α=((2g sin θ)/(3R)) φ_2 =(ω_1 ^2 /(2α))=((3R)/(4g sin θ)) ×(((μ−tan θ)^2 ω_0 ^2 )/((3μ−tan θ)^2 )) =((3(μ−tan θ)^2 ω_0 ^2 R)/(4g(3μ−tan θ)^2 sin θ)) t_2 =(ω_1 /α)=(((μ−tan θ)ω_0 )/(3μ−tan θ))×((3R)/(2g sin θ)) =((3(μ−tan θ)ω_0 R)/(2g (3μ−tan θ) sin θ)) total rotation angle: φ=φ_1 +φ_2 =(((2μ−tan θ)ω_0 ^2 R)/(g(3μ−tan θ)^2 cos θ))+((3(μ−tan θ)^2 ω_0 ^2 R)/(4g(3μ−tan θ)^2 sin θ)) =((ω_0 ^2 R)/(g(3μ−tan θ)^2 ))[((2μ−tan θ)/(cos θ))+((3(μ−tan θ)^2 )/(4 sin θ))] =(((μ+tan θ)ω_0 ^2 R)/(4g(3μ−tan θ) sin θ)) total number of turns: n=(φ/(2π))=(((μ+tan θ)ω_0 ^2 R)/(8πg(3μ−tan θ) sin θ)) total time: T= t_1 + t_2 =((ω_0 R)/(g(3μ−tan θ) cos θ))+((3(μ−tan θ)ω_0 R)/(2g(3μ−tan θ) sin θ)) =((ω_0 R)/(g(3μ−tan θ)))[(1/(cos θ))+((3(μ−tan θ))/(2 sin θ))] =((ω_0 R)/(2g sin θ)) we see such that this motion is possible, i.e. ω_1 ≥0, we must have μ−tan θ≥0, i.e. μ≥tan θ.](https://www.tinkutara.com/question/Q225646.png)
$$\underline{{phase}\:\mathrm{1}:\:{t}=\mathrm{0}\:{to}\:{t}_{\mathrm{1}} } \\ $$$${at}\:{t}=\mathrm{0}\:{the}\:{cylinder}\:{has}\:{angular}\: \\ $$$${velocity},\:{but}\:{no}\:{translational} \\ $$$${velocity},\:{therefore}\:{it}\:{will}\:{roll}\:{and} \\ $$$${slip}\:{simultaneously},\:{till}\:{its}\: \\ $$$${translational}\:{velocity}\:{matches} \\ $$$${its}\:{angular}\:{velocity},\:{i}.{e}.\:{v}_{\mathrm{1}} =\omega_{\mathrm{1}} {R}.\: \\ $$$${after}\:{that}\:{it}\:{will}\:{roll}\:{purely}. \\ $$$$ \\ $$$$\underline{{phase}\:\mathrm{2}:\:{t}={t}_{\mathrm{1}} \:{to}\:{t}_{\mathrm{2}} } \\ $$$${the}\:{cylinder}\:{rolls}\:{without}\:{slipping} \\ $$$${till}\:{it}\:{reaches}\:{its}\:{highest}\:{position}\: \\ $$$${and}\:{stops}\:{momentarily}.\:{then}\: \\ $$$${the}\:{cyclinder}\:{begins}\:{to}\:{roll}\:{down} \\ $$$${the}\:{incline}\:{backwards}. \\ $$$$ \\ $$$$\boldsymbol{{phase}}\:\mathrm{1}: \\ $$$${f}=\mu{N}=\mu{Mg}\:\mathrm{cos}\:\theta \\ $$$${Ma}={f}−{Mg}\:\mathrm{sin}\:\theta={Mg}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{a}={g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$${a}=\frac{{v}_{\mathrm{1}} }{{t}_{\mathrm{1}} }\:\Rightarrow{t}_{\mathrm{1}} =\frac{{v}_{\mathrm{1}} }{{g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)} \\ $$$${I}\alpha={fR} \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\alpha=\mu{Mg}\:\mathrm{cos}\:\theta{R} \\ $$$$\Rightarrow\alpha=\frac{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}{{R}} \\ $$$$\alpha=\frac{{w}_{\mathrm{0}} −\omega_{\mathrm{1}} }{{t}_{\mathrm{1}} }\:\Rightarrow{t}_{\mathrm{1}} =\frac{\left(\omega_{\mathrm{0}} −\omega_{\mathrm{1}} \right){R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta} \\ $$$$\frac{\left(\omega_{\mathrm{0}} −\omega_{\mathrm{1}} \right){R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}=\frac{{v}_{\mathrm{1}} }{{g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)} \\ $$$${with}\:{v}_{\mathrm{1}} =\omega_{\mathrm{1}} {R} \\ $$$$\frac{\left(\omega_{\mathrm{0}} −\omega_{\mathrm{1}} \right){R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}=\frac{\omega_{\mathrm{1}} {R}}{{g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)} \\ $$$$\frac{\omega_{\mathrm{0}} −\omega_{\mathrm{1}} }{\mathrm{2}\mu\:\mathrm{cos}\:\theta}=\frac{\omega_{\mathrm{1}} }{\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\omega_{\mathrm{1}} =\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} }{\mathrm{3}\mu−\mathrm{tan}\:\theta} \\ $$$${rotation}\:{angle}\:{in}\:{phase}\:\mathrm{1}: \\ $$$$\phi_{\mathrm{1}} =\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} −\omega_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}\alpha} \\ $$$$\:\:\:\:\:=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}\mu{g}\:\mathrm{cos}\:\theta}\left(\mathrm{1}+\frac{\mu−\mathrm{tan}\:\theta}{\mathrm{3}\mu−\mathrm{tan}\:\theta}\right)\left(\mathrm{1}−\frac{\mu−\mathrm{tan}\:\theta}{\mathrm{3}\mu−\mathrm{tan}\:\theta}\right) \\ $$$$\:\:\:\:\:=\frac{\left(\mathrm{2}\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{cos}\:\theta} \\ $$$$\:{t}_{\mathrm{1}} =\frac{\left(\omega_{\mathrm{0}} −\omega_{\mathrm{1}} \right){R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta} \\ $$$$\:\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}\left(\mathrm{1}−\frac{\mu−\mathrm{tan}\:\theta}{\mathrm{3}\mu−\mathrm{tan}\:\theta}\right) \\ $$$$\:\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{cos}\:\theta} \\ $$$$ \\ $$$$\boldsymbol{{phase}}\:\mathrm{2}: \\ $$$${energy}\:{conservation}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{MR}^{\mathrm{2}} \omega_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}}+{Mv}_{\mathrm{1}} ^{\mathrm{2}} \right)={Mg}\phi_{\mathrm{2}} {R}\:\mathrm{sin}\:\theta \\ $$$$\phi_{\mathrm{2}} =\frac{\mathrm{3}\omega_{\mathrm{1}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\:\mathrm{sin}\:\theta} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$${or}: \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\alpha=−{fR} \\ $$$${Ma}={f}−{Mg}\:\mathrm{sin}\:\theta \\ $$$${since}\:{a}=\alpha{R}, \\ $$$${M}\alpha{R}^{\mathrm{2}} ={fR}−{MgR}\:\mathrm{sin}\:\theta \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\alpha+{M}\alpha{R}^{\mathrm{2}} ={MgR}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\alpha=\frac{\mathrm{2}{g}\:\mathrm{sin}\:\theta}{\mathrm{3}{R}} \\ $$$$\phi_{\mathrm{2}} =\frac{\omega_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}\alpha}=\frac{\mathrm{3}{R}}{\mathrm{4}{g}\:\mathrm{sin}\:\theta}\:×\frac{\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega_{\mathrm{0}} ^{\mathrm{2}} }{\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:=\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$\:{t}_{\mathrm{2}} =\frac{\omega_{\mathrm{1}} }{\alpha}=\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} }{\mathrm{3}\mu−\mathrm{tan}\:\theta}×\frac{\mathrm{3}{R}}{\mathrm{2}{g}\:\mathrm{sin}\:\theta} \\ $$$$\:\:\:=\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} {R}}{\mathrm{2}{g}\:\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${total}\:{rotation}\:{angle}: \\ $$$$\phi=\phi_{\mathrm{1}} +\phi_{\mathrm{2}} \\ $$$$\:\:\:=\frac{\left(\mathrm{2}\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$\:\:\:=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} }\left[\frac{\mathrm{2}\mu−\mathrm{tan}\:\theta}{\mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} }{\mathrm{4}\:\mathrm{sin}\:\theta}\right] \\ $$$$\:\:\:=\frac{\left(\mu+\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${total}\:{number}\:{of}\:{turns}: \\ $$$${n}=\frac{\phi}{\mathrm{2}\pi}=\frac{\left(\mu+\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{8}\pi{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${total}\:{time}: \\ $$$${T}=\:{t}_{\mathrm{1}} +\:{t}_{\mathrm{2}} \\ $$$$\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} {R}}{\mathrm{2}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$$\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)}\left[\frac{\mathrm{1}}{\mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)}{\mathrm{2}\:\mathrm{sin}\:\theta}\right] \\ $$$$\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{\mathrm{2}{g}\:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${we}\:{see}\:{such}\:{that}\:{this}\:{motion}\:{is}\: \\ $$$${possible},\:{i}.{e}.\:\omega_{\mathrm{1}} \geqslant\mathrm{0},\:{we}\:{must}\:{have} \\ $$$$\mu−\mathrm{tan}\:\theta\geqslant\mathrm{0},\:{i}.{e}.\:\mu\geqslant\mathrm{tan}\:\theta. \\ $$
Commented by mr W last updated on 05/Nov/25

Commented by mr W last updated on 05/Nov/25

$${it}'{s}\:{interesting}\:{to}\:{note}\:{that} \\ $$$${T}=\frac{\omega_{\mathrm{0}} {R}}{\mathrm{2}{g}\:\mathrm{sin}\:\theta},\:{which}\:{is}\:{independent} \\ $$$${from}\:\mu\:{and}\:{is}\:{equal}\:{to}\:{the}\:{time} \\ $$$${which}\:{the}\:{same}\:{cylinder}\:{takes}\: \\ $$$${when}\:{it}\:{rolls}\:{upwards}\:{the}\:{incline} \\ $$$${with}\:{an}\:{initial}\:{angular}\:{velocity}\:\omega_{\mathrm{0}} \\ $$$${and}\:{without}\:{slipping}. \\ $$
Commented by ajfour last updated on 05/Nov/25

$${superb}\:{sir}!\:{Fine}\:{result}.\:{I}\:{had}\:{not} \\ $$$${expected}\:{such}\:{simplification}! \\ $$
Commented by ajfour last updated on 05/Nov/25
Commented by mr W last updated on 05/Nov/25

$${thanks}\:{for}\:{reviewing}\:{sir}! \\ $$
Commented by fantastic last updated on 05/Nov/25

$${this}\:{is}\:{very}\:{interesting} \\ $$