Menu Close

Question-225661




Question Number 225661 by mr W last updated on 05/Nov/25
Commented by mr W last updated on 05/Nov/25
Commented by fantastic last updated on 05/Nov/25
i have a feeling that  the block M will acheive  its max v at 2nd phase  when the pellete will  start to go left after  going to the right  What do you think sir
$${i}\:{have}\:{a}\:{feeling}\:{that} \\ $$$${the}\:{block}\:{M}\:{will}\:{acheive} \\ $$$${its}\:{max}\:{v}\:{at}\:\mathrm{2}{nd}\:{phase} \\ $$$${when}\:{the}\:{pellete}\:{will} \\ $$$${start}\:{to}\:{go}\:{left}\:{after} \\ $$$${going}\:{to}\:{the}\:{right} \\ $$$${What}\:{do}\:{you}\:{think}\:{sir} \\ $$
Commented by mr W last updated on 06/Nov/25
maybe. what′s your exact answer?
$${maybe}.\:{what}'{s}\:{your}\:{exact}\:{answer}? \\ $$
Commented by mahdipoor last updated on 06/Nov/25
my final ode eq is :   (A=v_M ^. )  A(((M+m)/(mr)))+ω^2 cosθ+αsinθ=0  A((M/(mr)))tanθ+(g/r)+ω^2 sinθ−αcosθ=0  ω=θ^.    ,   α=θ^(..)   this eq must solve from  { ((θ=90 , ω^2 =((2g)/r)  ,  α=0)),((v_M =0  , A=0)) :}  to θ=90  again . v_M  at this is v_(max)
$$\mathrm{my}\:\mathrm{final}\:\mathrm{ode}\:\mathrm{eq}\:\mathrm{is}\::\:\:\:\left(\mathrm{A}=\overset{.} {\mathrm{v}}_{\mathrm{M}} \right) \\ $$$$\mathrm{A}\left(\frac{\mathrm{M}+\mathrm{m}}{\mathrm{mr}}\right)+\omega^{\mathrm{2}} \mathrm{cos}\theta+\alpha\mathrm{sin}\theta=\mathrm{0} \\ $$$$\mathrm{A}\left(\frac{\mathrm{M}}{\mathrm{mr}}\right)\mathrm{tan}\theta+\frac{\mathrm{g}}{\mathrm{r}}+\omega^{\mathrm{2}} \mathrm{sin}\theta−\alpha\mathrm{cos}\theta=\mathrm{0} \\ $$$$\omega=\overset{.} {\theta}\:\:\:,\:\:\:\alpha=\overset{..} {\theta} \\ $$$$\mathrm{this}\:\mathrm{eq}\:\mathrm{must}\:\mathrm{solve}\:\mathrm{from}\:\begin{cases}{\theta=\mathrm{90}\:,\:\omega^{\mathrm{2}} =\frac{\mathrm{2g}}{\mathrm{r}}\:\:,\:\:\alpha=\mathrm{0}}\\{\mathrm{v}_{\mathrm{M}} =\mathrm{0}\:\:,\:\mathrm{A}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{to}\:\theta=\mathrm{90}\:\:\mathrm{again}\:.\:\mathrm{v}_{\mathrm{M}} \:\mathrm{at}\:\mathrm{this}\:\mathrm{is}\:\mathrm{v}_{\mathrm{max}} \\ $$
Commented by mr W last updated on 07/Nov/25
thanks sir!  to exactly solve this problem is not  possible, due to this d.e. as you   showed, which can not be solved.  but fortunately the question only   requests the maximum velocity.   then we don′t need to solve this   hard d.e. that means we can find  out the maximum velocity, but we  can not find out at what time and  at what position of the block this  happens.
$${thanks}\:{sir}! \\ $$$${to}\:{exactly}\:{solve}\:{this}\:{problem}\:{is}\:{not} \\ $$$${possible},\:{due}\:{to}\:{this}\:{d}.{e}.\:{as}\:{you}\: \\ $$$${showed},\:{which}\:{can}\:{not}\:{be}\:{solved}. \\ $$$${but}\:{fortunately}\:{the}\:{question}\:{only}\: \\ $$$${requests}\:{the}\:{maximum}\:{velocity}.\: \\ $$$${then}\:{we}\:{don}'{t}\:{need}\:{to}\:{solve}\:{this}\: \\ $$$${hard}\:{d}.{e}.\:{that}\:{means}\:{we}\:{can}\:{find} \\ $$$${out}\:{the}\:{maximum}\:{velocity},\:{but}\:{we} \\ $$$${can}\:{not}\:{find}\:{out}\:{at}\:{what}\:{time}\:{and} \\ $$$${at}\:{what}\:{position}\:{of}\:{the}\:{block}\:{this} \\ $$$${happens}. \\ $$
Answered by mr W last updated on 07/Nov/25
from t=0 to t_1  the block M doesn′t  move, because a motion of it to the  left is prevented by the wall. when  the pellet reaches the bottom of the  cavity, its normal reaction force  will push the block to the right. upon  now the block can start to move.    at t=t_1 :  velocity of pellet: v_0 =(√(2gr))  velocity of block: 0  upon now the block starts to move to  the right, away from the wall.    at some time t=t_2 :  the block has maximum velocity V_(max) ,  when the pellet is at the lowest  position.  MV_(max) −mv=mv_0  ⇒v=((MV_(max) )/m)−v_0   ((MV_(max) ^2 )/2)+((mv^2 )/2)=((mv_0 ^2 )/2)  MV_(max) ^2 +m(((MV_(max) )/m)−v_0 )^2 =mv_0 ^2   ⇒V_(max) =((2(√(2gr)))/(1+(M/m)))  ✓  ⇒v=(1−(2/(1+(M/m))))(√(2gr))
$${from}\:{t}=\mathrm{0}\:{to}\:{t}_{\mathrm{1}} \:{the}\:{block}\:{M}\:{doesn}'{t} \\ $$$${move},\:{because}\:{a}\:{motion}\:{of}\:{it}\:{to}\:{the} \\ $$$${left}\:{is}\:{prevented}\:{by}\:{the}\:{wall}.\:{when} \\ $$$${the}\:{pellet}\:{reaches}\:{the}\:{bottom}\:{of}\:{the} \\ $$$${cavity},\:{its}\:{normal}\:{reaction}\:{force} \\ $$$${will}\:{push}\:{the}\:{block}\:{to}\:{the}\:{right}.\:{upon} \\ $$$${now}\:{the}\:{block}\:{can}\:{start}\:{to}\:{move}. \\ $$$$ \\ $$$${at}\:{t}={t}_{\mathrm{1}} : \\ $$$${velocity}\:{of}\:{pellet}:\:{v}_{\mathrm{0}} =\sqrt{\mathrm{2}{gr}} \\ $$$${velocity}\:{of}\:{block}:\:\mathrm{0} \\ $$$${upon}\:{now}\:{the}\:{block}\:{starts}\:{to}\:{move}\:{to} \\ $$$${the}\:{right},\:{away}\:{from}\:{the}\:{wall}. \\ $$$$ \\ $$$${at}\:{some}\:{time}\:{t}={t}_{\mathrm{2}} : \\ $$$${the}\:{block}\:{has}\:{maximum}\:{velocity}\:{V}_{{max}} , \\ $$$${when}\:{the}\:{pellet}\:{is}\:{at}\:{the}\:{lowest} \\ $$$${position}. \\ $$$${MV}_{{max}} −{mv}={mv}_{\mathrm{0}} \:\Rightarrow{v}=\frac{{MV}_{{max}} }{{m}}−{v}_{\mathrm{0}} \\ $$$$\frac{{MV}_{{max}} ^{\mathrm{2}} }{\mathrm{2}}+\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}=\frac{{mv}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}} \\ $$$${MV}_{{max}} ^{\mathrm{2}} +{m}\left(\frac{{MV}_{{max}} }{{m}}−{v}_{\mathrm{0}} \right)^{\mathrm{2}} ={mv}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$\Rightarrow{V}_{{max}} =\frac{\mathrm{2}\sqrt{\mathrm{2}{gr}}}{\mathrm{1}+\frac{{M}}{{m}}}\:\:\checkmark \\ $$$$\Rightarrow{v}=\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+\frac{{M}}{{m}}}\right)\sqrt{\mathrm{2}{gr}} \\ $$
Commented by mr W last updated on 07/Nov/25
Commented by mr W last updated on 07/Nov/25
at some time t=t_3 , the pellet is at  its highest position, it has the same  velocity as the block: V_m   (M+m)V_m =mv_0   ⇒V_m =(v_0 /(1+(M/m)))=((√(2gr))/(1+(M/m)))=(V_(max) /2)  (((M+m)V_m ^2 )/2)=mg(r−h)  ⇒h=(r/(1+(m/M)))<r
$${at}\:{some}\:{time}\:{t}={t}_{\mathrm{3}} ,\:{the}\:{pellet}\:{is}\:{at} \\ $$$${its}\:{highest}\:{position},\:{it}\:{has}\:{the}\:{same} \\ $$$${velocity}\:{as}\:{the}\:{block}:\:{V}_{{m}} \\ $$$$\left({M}+{m}\right){V}_{{m}} ={mv}_{\mathrm{0}} \\ $$$$\Rightarrow{V}_{{m}} =\frac{{v}_{\mathrm{0}} }{\mathrm{1}+\frac{{M}}{{m}}}=\frac{\sqrt{\mathrm{2}{gr}}}{\mathrm{1}+\frac{{M}}{{m}}}=\frac{{V}_{{max}} }{\mathrm{2}} \\ $$$$\frac{\left({M}+{m}\right){V}_{{m}} ^{\mathrm{2}} }{\mathrm{2}}={mg}\left({r}−{h}\right) \\ $$$$\Rightarrow{h}=\frac{{r}}{\mathrm{1}+\frac{{m}}{{M}}}<{r} \\ $$
Commented by mr W last updated on 07/Nov/25
Commented by mr W last updated on 07/Nov/25
this is how the velocity of the  objects changes:
$${this}\:{is}\:{how}\:{the}\:{velocity}\:{of}\:{the} \\ $$$${objects}\:{changes}: \\ $$
Commented by mr W last updated on 07/Nov/25
Commented by fantastic last updated on 07/Nov/25
good methos sir
$${good}\:{methos}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *