Menu Close

Question-225700




Question Number 225700 by mr W last updated on 07/Nov/25
Commented by mr W last updated on 07/Nov/25
mass of bullet: m  mass of uniform rod: M  bullet keeps embedded in rod after  the strike.
$${mass}\:{of}\:{bullet}:\:{m} \\ $$$${mass}\:{of}\:{uniform}\:{rod}:\:{M} \\ $$$${bullet}\:{keeps}\:{embedded}\:{in}\:{rod}\:{after} \\ $$$${the}\:{strike}. \\ $$
Commented by ajfour last updated on 07/Nov/25
mvx=(((ML^2 )/3)+mx^2 )ω  ω=((vx)/(((ML^2 )/(3m))+x^2 ))=(v/(x+(k/x)))  ω is max when x=(√k)        so   x_c =(√(M/m))((L/( (√3))))
$${mvx}=\left(\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}+{mx}^{\mathrm{2}} \right)\omega \\ $$$$\omega=\frac{{vx}}{\frac{{ML}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} }=\frac{{v}}{{x}+\frac{{k}}{{x}}} \\ $$$$\omega\:{is}\:{max}\:{when}\:{x}=\sqrt{{k}} \\ $$$$\:\:\:\:\:\:{so}\:\:\:\boldsymbol{{x}}_{\boldsymbol{{c}}} =\sqrt{\frac{\boldsymbol{{M}}}{\boldsymbol{{m}}}}\left(\frac{{L}}{\:\sqrt{\mathrm{3}}}\right) \\ $$
Commented by mr W last updated on 07/Nov/25
great sir!
$${great}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *