Menu Close

Question-225856




Question Number 225856 by ajfour last updated on 15/Nov/25
Commented by ajfour last updated on 15/Nov/25
Parabola shown is  y=x^2 .  Find equations of maximum  radius yellow circles, or find         r, C(h,k) , C ′(−h,k)
$${Parabola}\:{shown}\:{is}\:\:{y}={x}^{\mathrm{2}} . \\ $$$${Find}\:{equations}\:{of}\:{maximum} \\ $$$${radius}\:{yellow}\:{circles},\:{or}\:{find} \\ $$$$\:\:\:\:\:\:\:{r},\:{C}\left({h},{k}\right)\:,\:{C}\:'\left(−{h},{k}\right) \\ $$
Commented by mr W last updated on 15/Nov/25
radius of blue circle must be given.
$${radius}\:{of}\:{blue}\:{circle}\:{must}\:{be}\:{given}. \\ $$
Commented by ajfour last updated on 15/Nov/25
Take it just R. as an example  take R=2.
$${Take}\:{it}\:{just}\:{R}.\:{as}\:{an}\:{example} \\ $$$${take}\:{R}=\mathrm{2}. \\ $$
Commented by mr W last updated on 15/Nov/25
Commented by mr W last updated on 15/Nov/25
Commented by mr W last updated on 15/Nov/25
Commented by mr W last updated on 15/Nov/25
we can only solve for r nummerically.
$${we}\:{can}\:{only}\:{solve}\:{for}\:{r}\:{nummerically}. \\ $$
Commented by ajfour last updated on 15/Nov/25
I got r=(1/2)(R−(√(R−(1/4))))  for R=2 eq of right yellow circle is  (x−((√6)/( (√7)))−((√6)/4))^2 +(y−(7/4)+(1/( (√7))))^2 =(1−((√7)/4))^2
$${I}\:{got}\:{r}=\frac{\mathrm{1}}{\mathrm{2}}\left({R}−\sqrt{{R}−\frac{\mathrm{1}}{\mathrm{4}}}\right) \\ $$$${for}\:{R}=\mathrm{2}\:{eq}\:{of}\:{right}\:{yellow}\:{circle}\:{is} \\ $$$$\left({x}−\frac{\sqrt{\mathrm{6}}}{\:\sqrt{\mathrm{7}}}−\frac{\sqrt{\mathrm{6}}}{\mathrm{4}}\right)^{\mathrm{2}} +\left({y}−\frac{\mathrm{7}}{\mathrm{4}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}}}\right)^{\mathrm{2}} =\left(\mathrm{1}−\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$
Commented by ajfour last updated on 15/Nov/25
Commented by fantastic2 last updated on 15/Nov/25
i think    { (((x−h)^2 +(y−k)^2 =r^2 )),((y=x^2 )) :}⇒x_1 =α y_1 =β  α &β will be in terms of k,h&r   { (((x−h)^2 +(y−k)^2 =r^2 )),((x^2 +(y−R)^2 =R^2 )) :}⇒x_2 =γ y_2 =δ  γ&δ will be in terms of R,h&k  at r_(max)   (√((x_1 −x_2 )^2 +(y_1 −y_2 )^2 )) will be maximum
$${i}\:{think}\: \\ $$$$\begin{cases}{\left({x}−{h}\right)^{\mathrm{2}} +\left({y}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} }\\{{y}={x}^{\mathrm{2}} }\end{cases}\Rightarrow{x}_{\mathrm{1}} =\alpha\:{y}_{\mathrm{1}} =\beta \\ $$$$\alpha\:\&\beta\:{will}\:{be}\:{in}\:{terms}\:{of}\:{k},{h\&r} \\ $$$$\begin{cases}{\left({x}−{h}\right)^{\mathrm{2}} +\left({y}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} }\\{{x}^{\mathrm{2}} +\left({y}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} }\end{cases}\Rightarrow{x}_{\mathrm{2}} =\gamma\:{y}_{\mathrm{2}} =\delta \\ $$$$\gamma\&\delta\:{will}\:{be}\:{in}\:{terms}\:{of}\:{R},{h\&k} \\ $$$${at}\:{r}_{{max}} \\ $$$$\sqrt{\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)^{\mathrm{2}} }\:{will}\:{be}\:{maximum} \\ $$
Commented by mr W last updated on 15/Nov/25
ajfour sir:  you are right sir!  great job!
$${ajfour}\:{sir}: \\ $$$${you}\:{are}\:{right}\:{sir}! \\ $$$${great}\:{job}! \\ $$
Commented by ajfour last updated on 15/Nov/25
I agree tobyour reasoning. see my comment solution.
Answered by mr W last updated on 15/Nov/25
this is my way:  y=(x^2 /c) with c=1  say small yellow circle touches the  parabola at (p, (p^2 /c)).  tan θ=((2p)/c)  h=p+r sin θ=p+((2pr)/( (√(4p^2 +c))))  k=(p^2 /c)−r cos θ=(p^2 /c)−((cr)/( (√(4p^2 +c^2 ))))  since small yellow circle tangents  the big blue circle,  (p+((2pr)/( (√(4p^2 +c)))))^2 +(R−(p^2 /c)+((cr)/( (√(4p^2 +c^2 )))))^2 =(R−r)^2   p^2 +((4p^2 r)/( (√(4p^2 +c))))+((4p^2 r^2 )/(4p^2 +c^2 ))+(R−(p^2 /c))^2 +2(R−(p^2 /c))((cr)/( (√(4p^2 +c^2 ))))+((c^2 r^2 )/(4p^2 +c^2 ))=R^2 −2Rr+r^2   2[(((cR+p^2 ))/( (√(4p^2 +c^2 ))))+R]r=p^2 (((2R)/c)−1−(p^2 /c^2 ))  ⇒r=((p^2 (((2R)/c)−1−(p^2 /c^2 )))/(2(R+((cR+p^2 )/( (√(4p^2 +c^2 )))))))  (r/c)=(((p^2 /c^2 )(((2R)/c)−1−(p^2 /c^2 )))/(2((R/c)+(((R/c)+(p^2 /c^2 ))/( (√(1+((4p^2 )/c^2 ))))))))  with ξ=(p^2 /c^2 ), λ=(R/c)  ((2r)/c)= =((ξ(2λ−1−ξ))/(λ+((λ+ξ)/( (√(1+4ξ))))))  for maximum radius r: (d /dξ)=0.
$${this}\:{is}\:{my}\:{way}: \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{{c}}\:{with}\:{c}=\mathrm{1} \\ $$$${say}\:{small}\:{yellow}\:{circle}\:{touches}\:{the} \\ $$$${parabola}\:{at}\:\left({p},\:\frac{{p}^{\mathrm{2}} }{{c}}\right). \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{2}{p}}{{c}} \\ $$$${h}={p}+{r}\:\mathrm{sin}\:\theta={p}+\frac{\mathrm{2}{pr}}{\:\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}}} \\ $$$${k}=\frac{{p}^{\mathrm{2}} }{{c}}−{r}\:\mathrm{cos}\:\theta=\frac{{p}^{\mathrm{2}} }{{c}}−\frac{{cr}}{\:\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }} \\ $$$${since}\:{small}\:{yellow}\:{circle}\:{tangents} \\ $$$${the}\:{big}\:{blue}\:{circle}, \\ $$$$\left({p}+\frac{\mathrm{2}{pr}}{\:\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}}}\right)^{\mathrm{2}} +\left({R}−\frac{{p}^{\mathrm{2}} }{{c}}+\frac{{cr}}{\:\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\right)^{\mathrm{2}} =\left({R}−{r}\right)^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} +\frac{\mathrm{4}{p}^{\mathrm{2}} {r}}{\:\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}}}+\frac{\mathrm{4}{p}^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\left({R}−\frac{{p}^{\mathrm{2}} }{{c}}\right)^{\mathrm{2}} +\mathrm{2}\left({R}−\frac{{p}^{\mathrm{2}} }{{c}}\right)\frac{{cr}}{\:\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}+\frac{{c}^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }={R}^{\mathrm{2}} −\mathrm{2}{Rr}+{r}^{\mathrm{2}} \\ $$$$\mathrm{2}\left[\frac{\left({cR}+{p}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}+{R}\right]{r}={p}^{\mathrm{2}} \left(\frac{\mathrm{2}{R}}{{c}}−\mathrm{1}−\frac{{p}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{r}=\frac{{p}^{\mathrm{2}} \left(\frac{\mathrm{2}{R}}{{c}}−\mathrm{1}−\frac{{p}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\right)}{\mathrm{2}\left({R}+\frac{{cR}+{p}^{\mathrm{2}} }{\:\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\right)} \\ $$$$\frac{{r}}{{c}}=\frac{\frac{{p}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\left(\frac{\mathrm{2}{R}}{{c}}−\mathrm{1}−\frac{{p}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\right)}{\mathrm{2}\left(\frac{{R}}{{c}}+\frac{\frac{{R}}{{c}}+\frac{{p}^{\mathrm{2}} }{{c}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}+\frac{\mathrm{4}{p}^{\mathrm{2}} }{{c}^{\mathrm{2}} }}}\right)} \\ $$$${with}\:\xi=\frac{{p}^{\mathrm{2}} }{{c}^{\mathrm{2}} },\:\lambda=\frac{{R}}{{c}} \\ $$$$\frac{\mathrm{2}{r}}{{c}}=\:=\frac{\xi\left(\mathrm{2}\lambda−\mathrm{1}−\xi\right)}{\lambda+\frac{\lambda+\xi}{\:\sqrt{\mathrm{1}+\mathrm{4}\xi}}} \\ $$$${for}\:{maximum}\:{radius}\:{r}:\:\frac{{d}\:}{{d}\xi}=\mathrm{0}. \\ $$
Commented by mr W last updated on 15/Nov/25
gravitation question  F=((GMm)/x^2 )=mA  A=((GM)/x^2 )=(dv/dt)=−v(dv/dx)  vdv=−((GMdx)/x^2 )  ∫_0 ^v vdv=−∫_a ^x ((GMdx)/x^2 )  (v^2 /2)=GM((1/x)−(1/a))  v=−(dx/dt)=(√(2GM((1/x)−(1/a))))  dt=−(dx/( (√(2GM))(√((1/x)−(1/a)))))  ∫_0 ^T dt=−(1/( (√(2GM))))∫_a ^R (dx/( (√((1/x)−(1/a)))))  T=−(1/( (√(2GM))))∫_a ^R (((√(ax))dx)/( (√(a−x))))  T=((√a)/( (√(2GM))))[(√(x(a−x)))+a tan^(−1) (√((a−x)/x))]_a ^R   T=a(√(a/(2GM)))[(√((R/a)(1−(R/a))))+tan^(−1) (√((a/R)−1))]  ⇒T=a(√(a/(2GM)))[(√((R/a)(1−(R/a))))+cos^(−1) (√(R/a))]
$$\underline{{gravitation}\:{question}} \\ $$$${F}=\frac{{GMm}}{{x}^{\mathrm{2}} }={mA} \\ $$$${A}=\frac{{GM}}{{x}^{\mathrm{2}} }=\frac{{dv}}{{dt}}=−{v}\frac{{dv}}{{dx}} \\ $$$${vdv}=−\frac{{GMdx}}{{x}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{{v}} {vdv}=−\int_{{a}} ^{{x}} \frac{{GMdx}}{{x}^{\mathrm{2}} } \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}}={GM}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{a}}\right) \\ $$$${v}=−\frac{{dx}}{{dt}}=\sqrt{\mathrm{2}{GM}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{a}}\right)} \\ $$$${dt}=−\frac{{dx}}{\:\sqrt{\mathrm{2}{GM}}\sqrt{\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{a}}}} \\ $$$$\int_{\mathrm{0}} ^{{T}} {dt}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{GM}}}\int_{{a}} ^{{R}} \frac{{dx}}{\:\sqrt{\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{a}}}} \\ $$$${T}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{GM}}}\int_{{a}} ^{{R}} \frac{\sqrt{{ax}}{dx}}{\:\sqrt{{a}−{x}}} \\ $$$${T}=\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}{GM}}}\left[\sqrt{{x}\left({a}−{x}\right)}+{a}\:\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{{a}−{x}}{{x}}}\right]_{{a}} ^{{R}} \\ $$$${T}={a}\sqrt{\frac{{a}}{\mathrm{2}{GM}}}\left[\sqrt{\frac{{R}}{{a}}\left(\mathrm{1}−\frac{{R}}{{a}}\right)}+\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{{a}}{{R}}−\mathrm{1}}\right] \\ $$$$\Rightarrow{T}={a}\sqrt{\frac{{a}}{\mathrm{2}{GM}}}\left[\sqrt{\frac{{R}}{{a}}\left(\mathrm{1}−\frac{{R}}{{a}}\right)}+\mathrm{cos}^{−\mathrm{1}} \sqrt{\frac{{R}}{{a}}}\right] \\ $$
Commented by mr W last updated on 15/Nov/25
but we can short cut, since for  maximum yellow circle the tangent  line on blue circle must parallel to  the tangent line on the parabola.   then we can solve directly for r.
$${but}\:{we}\:{can}\:{short}\:{cut},\:{since}\:{for} \\ $$$${maximum}\:{yellow}\:{circle}\:{the}\:{tangent} \\ $$$${line}\:{on}\:{blue}\:{circle}\:{must}\:{parallel}\:{to} \\ $$$${the}\:{tangent}\:{line}\:{on}\:{the}\:{parabola}.\: \\ $$$${then}\:{we}\:{can}\:{solve}\:{directly}\:{for}\:{r}. \\ $$
Commented by ajfour last updated on 15/Nov/25
I got a simpler way  let point of tangency (p,(p^2 /c))  eq. of tangent  y−(p^2 /c)=2p(x−p)  If s shortest distance from (0,R)  then  s^2 =(((R+2p^2 −(p^2 /c))^2 )/(1+4p^2 ))  ((d(s^2 ))/dp)=0  ⇒    2(R+2p^2 −(p^2 /c))(4p−((2p)/c))(1+4p^2 )    =8p(R+2p^2 −(p^2 /c))^2   (1−(1/(2c)))(1+4p^2 )=R+2p^2 −(p^2 /c)  p^2 (4−(2/c)−2+(1/c))=R−1+(1/(2c))  p^2 =(((R−1+(1/(2c))))/((2−(1/c))))  R−q=R−(p^2 /c)=  BC^( 2) =p^2 +(R−(p^2 /c))^2 =(R−2r)^2   For  c=1  p^2 =R−(1/2)  (R−2r)^2 =(R−(1/2))+((1/2))^2   r=(1/2)(R−(√(R−(1/4))) )
$${I}\:{got}\:{a}\:{simpler}\:{way} \\ $$$${let}\:{point}\:{of}\:{tangency}\:\left({p},\frac{{p}^{\mathrm{2}} }{{c}}\right) \\ $$$${eq}.\:{of}\:{tangent} \\ $$$${y}−\frac{{p}^{\mathrm{2}} }{{c}}=\mathrm{2}{p}\left({x}−{p}\right) \\ $$$${If}\:\boldsymbol{{s}}\:{shortest}\:{distance}\:{from}\:\left(\mathrm{0},{R}\right) \\ $$$${then} \\ $$$${s}^{\mathrm{2}} =\frac{\left({R}+\mathrm{2}{p}^{\mathrm{2}} −\frac{{p}^{\mathrm{2}} }{{c}}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} } \\ $$$$\frac{{d}\left({s}^{\mathrm{2}} \right)}{{dp}}=\mathrm{0}\:\:\Rightarrow\:\: \\ $$$$\mathrm{2}\left({R}+\mathrm{2}{p}^{\mathrm{2}} −\frac{{p}^{\mathrm{2}} }{{c}}\right)\left(\mathrm{4}{p}−\frac{\mathrm{2}{p}}{{c}}\right)\left(\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} \right) \\ $$$$\:\:=\mathrm{8}{p}\left({R}+\mathrm{2}{p}^{\mathrm{2}} −\frac{{p}^{\mathrm{2}} }{{c}}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{c}}\right)\left(\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} \right)={R}+\mathrm{2}{p}^{\mathrm{2}} −\frac{{p}^{\mathrm{2}} }{{c}} \\ $$$${p}^{\mathrm{2}} \left(\mathrm{4}−\frac{\mathrm{2}}{{c}}−\mathrm{2}+\frac{\mathrm{1}}{{c}}\right)={R}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{c}} \\ $$$${p}^{\mathrm{2}} =\frac{\left({R}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{c}}\right)}{\left(\mathrm{2}−\frac{\mathrm{1}}{{c}}\right)} \\ $$$${R}−{q}={R}−\frac{{p}^{\mathrm{2}} }{{c}}= \\ $$$${BC}^{\:\mathrm{2}} ={p}^{\mathrm{2}} +\left({R}−\frac{{p}^{\mathrm{2}} }{{c}}\right)^{\mathrm{2}} =\left({R}−\mathrm{2}{r}\right)^{\mathrm{2}} \\ $$$${For}\:\:{c}=\mathrm{1} \\ $$$${p}^{\mathrm{2}} ={R}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({R}−\mathrm{2}{r}\right)^{\mathrm{2}} =\left({R}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{2}}\left({R}−\sqrt{{R}−\frac{\mathrm{1}}{\mathrm{4}}}\:\right) \\ $$
Commented by ajfour last updated on 15/Nov/25
I still have another way.  but please watch my gravitation  lecture.
$${I}\:{still}\:{have}\:{another}\:{way}. \\ $$$${but}\:{please}\:{watch}\:{my}\:{gravitation} \\ $$$${lecture}.\: \\ $$
Commented by ajfour last updated on 15/Nov/25
https://youtu.be/dH2KayLTr_M?si=S2RrzCitH7O6asVy
Commented by mr W last updated on 15/Nov/25
yes, this is also what i have meant.
$${yes},\:{this}\:{is}\:{also}\:{what}\:{i}\:{have}\:{meant}. \\ $$
Commented by mr W last updated on 15/Nov/25
Commented by ajfour last updated on 15/Nov/25
yes sir! you got it.
$${yes}\:{sir}!\:{you}\:{got}\:{it}. \\ $$
Commented by fantastic2 last updated on 15/Nov/25
MrW sir :reasonable
$${MrW}\:{sir}\::{reasonable} \\ $$
Answered by ajfour last updated on 15/Nov/25
To find maximum radius r of  yellow circle, we do this.  We minimise distance from center  of large circle of radiusR.  say tangency point on parabola  be P(x,x^2 ) because our parabola  equation is y=x^2 .  (R−2r)^2 =f(x)=x^2 +(R−x^2 )^2   For maximum r, we minimise  f(x) by setting ((df(x))/dx)=0  hence  2x+2(R−x^2 )(−2x)=0  as x≠0 we obtain  x^2 =R−(1/2)  x=(√(R−(1/2)))  now  (R−2r)^2 =x^2 +(R−x^2 )^2   we replace here found value of x.  (R−2r)^2 =R−(1/2)+(1/4)=R−(1/4)  we clearly and easily now get  r=(1/2)(R−(√(R−(1/4))) )  And if our given R=2  then  we plug in this value to get  r=(1/2)(2−(√(2−(1/4))))     r=1−((√7)/4)
$${To}\:{find}\:{maximum}\:{radius}\:{r}\:{of} \\ $$$${yellow}\:{circle},\:{we}\:{do}\:{this}. \\ $$$${We}\:{minimise}\:{distance}\:{from}\:{center} \\ $$$${of}\:{large}\:{circle}\:{of}\:{radiusR}. \\ $$$${say}\:{tangency}\:{point}\:{on}\:{parabola} \\ $$$${be}\:{P}\left({x},{x}^{\mathrm{2}} \right)\:{because}\:{our}\:{parabola} \\ $$$${equation}\:{is}\:\boldsymbol{{y}}=\boldsymbol{{x}}^{\mathrm{2}} . \\ $$$$\left({R}−\mathrm{2}{r}\right)^{\mathrm{2}} ={f}\left({x}\right)={x}^{\mathrm{2}} +\left({R}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${For}\:{maximum}\:{r},\:{we}\:{minimise} \\ $$$${f}\left({x}\right)\:{by}\:{setting}\:\frac{{df}\left({x}\right)}{{dx}}=\mathrm{0} \\ $$$${hence} \\ $$$$\mathrm{2}{x}+\mathrm{2}\left({R}−{x}^{\mathrm{2}} \right)\left(−\mathrm{2}{x}\right)=\mathrm{0} \\ $$$${as}\:{x}\neq\mathrm{0}\:{we}\:{obtain} \\ $$$${x}^{\mathrm{2}} ={R}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}=\sqrt{{R}−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${now} \\ $$$$\left({R}−\mathrm{2}{r}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\left({R}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${we}\:{replace}\:{here}\:{found}\:{value}\:{of}\:{x}. \\ $$$$\left({R}−\mathrm{2}{r}\right)^{\mathrm{2}} ={R}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}={R}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${we}\:{clearly}\:{and}\:{easily}\:{now}\:{get} \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{2}}\left({R}−\sqrt{{R}−\frac{\mathrm{1}}{\mathrm{4}}}\:\right) \\ $$$${And}\:{if}\:{our}\:{given}\:{R}=\mathrm{2}\:\:{then} \\ $$$${we}\:{plug}\:{in}\:{this}\:{value}\:{to}\:{get} \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}−\sqrt{\mathrm{2}−\frac{\mathrm{1}}{\mathrm{4}}}\right) \\ $$$$\:\:\:\boldsymbol{{r}}=\mathrm{1}−\frac{\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *