Question Number 225904 by ajfour last updated on 15/Nov/25

Commented by ajfour last updated on 15/Nov/25

$${If}\:{parabola}\:{is}\:{y}={x}^{\mathrm{2}} .\:{Find}\:{equations} \\ $$$${of}\:{both}\:{these}\:{circles}\:{of}\:{equal}\:{radii}. \\ $$
Answered by mr W last updated on 16/Nov/25

Commented by fantastic2 last updated on 16/Nov/25

$${from}\:{the}\:{picture}\:{we}\:{can}?{see} \\ $$$${R}\mathrm{sin}\:\theta={k}…{i} \\ $$$$\mathrm{2}{R}\mathrm{sin}\:\theta=\frac{{k}}{\mathrm{2}}+\frac{{k}^{\mathrm{2}} }{\mathrm{sin}\:\theta}\:…{ii} \\ $$$${ii}/{i} \\ $$$$\mathrm{2}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{{k}}{\mathrm{sin}\:\theta} \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{k} \\ $$$$\mathrm{sin}\:\theta={k}/\sqrt{\mathrm{1}+\mathrm{4}{k}^{\mathrm{2}} } \\ $$$$\frac{{k}}{{k}}\sqrt{\mathrm{1}+\mathrm{4}{k}^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{1}+\mathrm{4}{k}^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\mathrm{4}{k}^{\mathrm{2}} =\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${k}=\frac{\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$${R}=\frac{{k}}{\mathrm{sin}\:\theta}=\frac{{k}}{{k}}\sqrt{\mathrm{1}+\mathrm{4}{k}^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{2}}\checkmark \\ $$
Commented by mr W last updated on 16/Nov/25

$${y}=\frac{{x}^{\mathrm{2}} }{{c}}\:\left({c}=\mathrm{1}\:{here}\right) \\ $$$${say}\:{both}\:{circles}\:{with}\:{radius}\:{R}\:{touch} \\ $$$${the}\:{parabola}\:{at}\:\left({p},\:\frac{{p}^{\mathrm{2}} }{{c}}\right). \\ $$$$\mathrm{tan}\:\theta=\frac{{dy}}{{dx}}=\frac{\mathrm{2}{p}}{{c}}={m},\:{say} \\ $$$$\Rightarrow{p}=\frac{{cm}}{\mathrm{2}} \\ $$$${p}={R}\:\mathrm{sin}\:\theta \\ $$$$\frac{{mc}}{\mathrm{2}}=\frac{{Rm}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }} \\ $$$$\Rightarrow{m}^{\mathrm{2}} =\frac{\mathrm{4}{R}^{\mathrm{2}} }{\:{c}^{\mathrm{2}} }−\mathrm{1} \\ $$$$\frac{{p}^{\mathrm{2}} }{{c}}−{R}\:\mathrm{cos}\:\theta={R} \\ $$$$\frac{{m}^{\mathrm{2}} {c}}{\mathrm{4}}−\frac{{R}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}={R} \\ $$$$\frac{{m}^{\mathrm{2}} {c}}{\mathrm{4}}−\frac{{c}}{\:\mathrm{2}}={R} \\ $$$$\frac{{c}}{\mathrm{4}}\left(\frac{\mathrm{4}{R}^{\mathrm{2}} }{{c}^{\mathrm{2}} }−\mathrm{1}\right)−\frac{{c}}{\:\mathrm{2}}={R} \\ $$$${R}^{\mathrm{2}} −{cR}−\frac{\mathrm{3}{c}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$$$\left({R}−\frac{\mathrm{3}{c}}{\mathrm{2}}\right)\left({R}+\frac{{c}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\Rightarrow{R}=\frac{\mathrm{3}{c}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}=\mathrm{1}.\mathrm{5}\:{for}\:{c}=\mathrm{1} \\ $$
Commented by mr W last updated on 16/Nov/25

Commented by mr W last updated on 16/Nov/25

Commented by mr W last updated on 16/Nov/25

Commented by ajfour last updated on 16/Nov/25

$${Yes},\:{this}\:{is}\:{correct}.\:{Thanks}\:{Sir}. \\ $$
Commented by fantastic2 last updated on 16/Nov/25
