Menu Close

Show-that-log-7-7-7-7-1-




Question Number 225837 by Rojarani last updated on 14/Nov/25
Show that, log(√(7(√(7(√(7(√(7....α)))))))) =1
$${Show}\:{that},\:{log}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}….\alpha}}}}\:=\mathrm{1} \\ $$
Answered by fantastic last updated on 14/Nov/25
let (√(7(√(7(√(7(√(7(√(7..∞))))))))))=x  x^2 =7(√(7(√(7(√(7(√(7(√(7..∞))))))))))  7x=7(√(7(√(7(√(7(√(7(√(7..∞))))))))))  x^2 =7x⇒x=7 orx=0  logx=log7  log0=not possible
$${let}\:\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}..\infty}}}}}={x} \\ $$$${x}^{\mathrm{2}} =\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}..\infty}}}}} \\ $$$$\mathrm{7}{x}=\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}..\infty}}}}} \\ $$$${x}^{\mathrm{2}} =\mathrm{7}{x}\Rightarrow{x}=\mathrm{7}\:{orx}=\mathrm{0} \\ $$$${logx}={log}\mathrm{7} \\ $$$${log}\mathrm{0}={not}\:{possible} \\ $$
Answered by mr W last updated on 14/Nov/25
=log 7^((1/2)+(1/4)+(1/8)+...+(1/2^n )+...)   =log 7^1 =log 7≠1
$$=\mathrm{log}\:\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}+…+\frac{\mathrm{1}}{\mathrm{2}^{{n}} }+…} \\ $$$$=\mathrm{log}\:\mathrm{7}^{\mathrm{1}} =\mathrm{log}\:\mathrm{7}\neq\mathrm{1} \\ $$
Answered by AgniMath last updated on 15/Nov/25
there should be 7 at the base
$${there}\:{should}\:{be}\:\mathrm{7}\:{at}\:{the}\:{base} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *