Menu Close

Show-that-the-equation-1-sin-cos-1-sin-cos-1-may-be-express-in-the-form-a-sin-2-bsin-c-0-where-a-b-and-c-are-constants-to-be-found-




Question Number 226111 by Linton last updated on 19/Nov/25
Show that the equation  (1/(sinθ+cosθ)) + (1/(sinθ−cosθ)) = 1  may be express in the form  a(sinθ)^2 +bsinθ+c=0 where a b   and c are constants to be found.
$${Show}\:{that}\:{the}\:{equation} \\ $$$$\frac{\mathrm{1}}{{sin}\theta+{cos}\theta}\:+\:\frac{\mathrm{1}}{{sin}\theta−{cos}\theta}\:=\:\mathrm{1} \\ $$$${may}\:{be}\:{express}\:{in}\:{the}\:{form} \\ $$$${a}\left({sin}\theta\right)^{\mathrm{2}} +{bsin}\theta+{c}=\mathrm{0}\:{where}\:{a}\:{b}\: \\ $$$${and}\:{c}\:{are}\:{constants}\:{to}\:{be}\:{found}. \\ $$
Answered by Frix last updated on 20/Nov/25
(1/(s+c))+(1/(s−c))=1  (s−c)+(s+c)=(s+c)(s−c)  2s=s^2 −c^2   2s=s^2 −(1−s^2 )  2s=2s^2 −1  2sin^2  θ −2sin θ −1=0
$$\frac{\mathrm{1}}{{s}+{c}}+\frac{\mathrm{1}}{{s}−{c}}=\mathrm{1} \\ $$$$\left({s}−{c}\right)+\left({s}+{c}\right)=\left({s}+{c}\right)\left({s}−{c}\right) \\ $$$$\mathrm{2}{s}={s}^{\mathrm{2}} −{c}^{\mathrm{2}} \\ $$$$\mathrm{2}{s}={s}^{\mathrm{2}} −\left(\mathrm{1}−{s}^{\mathrm{2}} \right) \\ $$$$\mathrm{2}{s}=\mathrm{2}{s}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{2sin}^{\mathrm{2}} \:\theta\:−\mathrm{2sin}\:\theta\:−\mathrm{1}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *