Menu Close

Q226015-




Question Number 226134 by fantastic2 last updated on 20/Nov/25
Q226015
$${Q}\mathrm{226015} \\ $$
Answered by fantastic2 last updated on 20/Nov/25
f(x)+f((1/(1−x)))=x ...i  put x=(1/(1−x))  f((1/(1−x)))+f((1/(1−(1/(1−x)))))=(1/(1−x))  f((1/(1−x)))+f(((x−1)/x)))=(1/(1−x))... ii  put x=((x−1)/x) in i  f(((x−1)/x))+f(x)=((x−1)/x) ...iii  ii −iii) then iv+i  ⇒f(x)=((x^3 −x+1)/(2x(1−x)))
$${f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)={x}\:…{i} \\ $$$${put}\:{x}=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\left.{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)+{f}\left(\frac{{x}−\mathrm{1}}{{x}}\right)\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}}…\:{ii} \\ $$$${put}\:{x}=\frac{{x}−\mathrm{1}}{{x}}\:{in}\:{i} \\ $$$${f}\left(\frac{{x}−\mathrm{1}}{{x}}\right)+{f}\left({x}\right)=\frac{{x}−\mathrm{1}}{{x}}\:…{iii} \\ $$$$\left.{ii}\:−{iii}\right)\:{then}\:{iv}+{i} \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{{x}^{\mathrm{3}} −{x}+\mathrm{1}}{\mathrm{2}{x}\left(\mathrm{1}−{x}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *