

$$ \\ $$*Solution demystified* 🔥
Given: A + B + C = 6 —- (1)
A³ + B³ + C³ = 87 —- (2)
(A + 1)(B + 1)(C + 1) = 33 — (3)
Where A, B, and C represent Alpha, Beta and Gamma, respectively
(A + B + C)³ = [(A + B) + C]³
= (A + B)³ + 3C(A + B)² + 3C²(A + B) + C³ = (A³ + 3A²B + 3AB² + B³) + 3C(A² + B² + 2AB) + 3C²(A + B) + C³
= (A³ + B³ + C³) + 3(A + B + C)(AB + BC + AC) – 3ABC
Let A + B + C = p, AB + BC + AC = q and ABC = r
=> r³ = (A³ + B³ + C³) + 3pq – 3r — (4)
Substituting values in eqn (4), we have that:
6³ = 87 + 3•6q – 3r
=> 18q – 3r = 129
=> 6q – r = 43 —- (5)
From eqn (3), (A + 1)(B + 1)(C + 1) = 33
= ABC + AB + AC + A + BC + B + C + 1
= ABC + (AB + BC + AC) + (A + B + C) + 1 = r + q + p + 1
= r + q + 6 + 1
=> r + q + 7 = 33
=> q + r= 26 —— (6)
Add eqn (5) and eqn (6), it follows that:
7q = 69, => q = 69/7
Substitute q in eqn (6),
r = 26 – q = 26 – 69/7 = 113/7
r = 113/7 🦦
Now, 1/A + 1/B + 1/C
= (BC + AC + AB)/(ABC)
= q/r = (69/7)/(113/7) = 69/113
*: . 1/A + 1/B + 1/C = 69/113*
*By comparison, m = 69 & n = 113, => m + n = 69 + 113 = 182*
*: . m + n = 182*. 🦦✨
✅✅✨