Menu Close

Question-226246




Question Number 226246 by ajfour last updated on 23/Nov/25
Commented by fantastic2 last updated on 23/Nov/25
α is 30^0
$$\alpha\:{is}\:\mathrm{30}^{\mathrm{0}} \\ $$
Commented by fantastic2 last updated on 23/Nov/25
Commented by fantastic2 last updated on 23/Nov/25
Commented by ajfour last updated on 23/Nov/25
If sector angle is 2α.  Find r/R. Smaller ones are equal  in size.  Lets say tan α=m
$${If}\:{sector}\:{angle}\:{is}\:\mathrm{2}\alpha. \\ $$$${Find}\:{r}/{R}.\:{Smaller}\:{ones}\:{are}\:{equal} \\ $$$${in}\:{size}.\:\:{Lets}\:{say}\:\mathrm{tan}\:\alpha={m} \\ $$
Commented by mr W last updated on 23/Nov/25
α must be equal to 30°?
$$\alpha\:{must}\:{be}\:{equal}\:{to}\:\mathrm{30}°? \\ $$
Answered by fantastic2 last updated on 23/Nov/25
Commented by fantastic2 last updated on 24/Nov/25
����
Commented by ajfour last updated on 24/Nov/25
Commented by ajfour last updated on 24/Nov/25
yes all correct. Great.
$${yes}\:{all}\:{correct}.\:{Great}. \\ $$
Commented by fantastic2 last updated on 23/Nov/25
(R−r)^2 =(2r)^2 +(2r)^2 −2(2r)(2r)cos 150^0   (R−r)^2 =8r^2 +4(√3)r^2   (R−r)^2 =4r^2 (2+(√3))  R=r((√(8+4(√3)))+1)  (R/r)=((√(8+4(√3)))+1)
$$\left({R}−{r}\right)^{\mathrm{2}} =\left(\mathrm{2}{r}\right)^{\mathrm{2}} +\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{2}{r}\right)\left(\mathrm{2}{r}\right)\mathrm{cos}\:\mathrm{150}^{\mathrm{0}} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} =\mathrm{8}{r}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}{r}^{\mathrm{2}} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} =\mathrm{4}{r}^{\mathrm{2}} \left(\mathrm{2}+\sqrt{\mathrm{3}}\right) \\ $$$${R}={r}\left(\sqrt{\mathrm{8}+\mathrm{4}\sqrt{\mathrm{3}}}+\mathrm{1}\right) \\ $$$$\frac{{R}}{{r}}=\left(\sqrt{\mathrm{8}+\mathrm{4}\sqrt{\mathrm{3}}}+\mathrm{1}\right) \\ $$
Commented by fantastic2 last updated on 23/Nov/25
or  (r/(R−r))=sin 15^0 =(((√6)−(√2))/4)  4r=((√6)−(√2))(R−r)=R((√6)−(√2))−r((√6)−(√2))  r(4+(√6)−(√2))=R((√6)−(√2))  (R/r)=((4+(√6)−(√2))/( (√6)−(√2)))  example  if R=1   r≈0.205604
$${or} \\ $$$$\frac{{r}}{{R}−{r}}=\mathrm{sin}\:\mathrm{15}^{\mathrm{0}} =\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\mathrm{4}{r}=\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)\left({R}−{r}\right)={R}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)−{r}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right) \\ $$$${r}\left(\mathrm{4}+\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)={R}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right) \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{4}+\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}} \\ $$$${example} \\ $$$${if}\:{R}=\mathrm{1}\: \\ $$$${r}\approx\mathrm{0}.\mathrm{205604} \\ $$
Answered by Ghisom_ last updated on 24/Nov/25
let the radius of the sector R=1  the angle = 2α  I rotate the image by −90° and use the  upper half of the sector for calculations    1.  circle touching both y=xtan α and x^2 +y^2 =1  C_1 : (x−p)^2 +(y−r_1 )^2 =r_1 ^2   ⇒  p=((1−sin (α/2))/(cos (α/2)))∧r_1 =ptan (α/2)    2.  circle touching both y=xtan α and C_1   C_2 : (x−q)^2 +y^2 =r_2 ^2   ⇒  q=((1−sin (α/2))/(cos (α/2) (1+(√2)sin (α/2))^2 ))∧r_2 =2qcos (α/2) sin (α/2)    α=30° ⇒ r_1 =r_2 =3(√6)+4(√3)−5(√2)−7  (r_(1, 2) /R)=(√6)+(√2)+1
$$\mathrm{let}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sector}\:{R}=\mathrm{1} \\ $$$$\mathrm{the}\:\mathrm{angle}\:=\:\mathrm{2}\alpha \\ $$$$\mathrm{I}\:\mathrm{rotate}\:\mathrm{the}\:\mathrm{image}\:\mathrm{by}\:−\mathrm{90}°\:\mathrm{and}\:\mathrm{use}\:\mathrm{the} \\ $$$$\mathrm{upper}\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sector}\:\mathrm{for}\:\mathrm{calculations} \\ $$$$ \\ $$$$\mathrm{1}. \\ $$$$\mathrm{circle}\:\mathrm{touching}\:\mathrm{both}\:{y}={x}\mathrm{tan}\:\alpha\:\mathrm{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${C}_{\mathrm{1}} :\:\left({x}−{p}\right)^{\mathrm{2}} +\left({y}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} ={r}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${p}=\frac{\mathrm{1}−\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}}{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}\wedge{r}_{\mathrm{1}} ={p}\mathrm{tan}\:\frac{\alpha}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{2}. \\ $$$$\mathrm{circle}\:\mathrm{touching}\:\mathrm{both}\:{y}={x}\mathrm{tan}\:\alpha\:\mathrm{and}\:{C}_{\mathrm{1}} \\ $$$${C}_{\mathrm{2}} :\:\left({x}−{q}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${q}=\frac{\mathrm{1}−\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}}{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} }\wedge{r}_{\mathrm{2}} =\mathrm{2}{q}\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}} \\ $$$$ \\ $$$$\alpha=\mathrm{30}°\:\Rightarrow\:{r}_{\mathrm{1}} ={r}_{\mathrm{2}} =\mathrm{3}\sqrt{\mathrm{6}}+\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{5}\sqrt{\mathrm{2}}−\mathrm{7} \\ $$$$\frac{{r}_{\mathrm{1},\:\mathrm{2}} }{{R}}=\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}+\mathrm{1} \\ $$
Commented by fantastic2 last updated on 25/Nov/25
good method
$${good}\:{method} \\ $$
Commented by ajfour last updated on 24/Nov/25
yeah, i appreciare this more.  Thanks.
$${yeah},\:{i}\:{appreciare}\:{this}\:{more}. \\ $$$${Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *