Question Number 226249 by fantastic2 last updated on 23/Nov/25

Commented by fantastic2 last updated on 23/Nov/25

Answered by mr W last updated on 24/Nov/25

Commented by mr W last updated on 24/Nov/25

$${such}\:{that}\:{the}\:{ball}\:{reaches}\:{point}\:{C}, \\ $$$$\frac{{mu}^{\mathrm{2}} }{{R}}={mg} \\ $$$$\Rightarrow{u}^{\mathrm{2}} ={gR} \\ $$$${u}_{{A}} ^{\mathrm{2}} ={u}^{\mathrm{2}} +\mathrm{2}{gR}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)={gR}\left(\mathrm{3}−\mathrm{2}\:\mathrm{cos}\:\alpha\right) \\ $$$${AB}=\mathrm{2}{R}\:\mathrm{sin}\:\alpha=\frac{{u}_{{A}} ^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\alpha}{{g}} \\ $$$$\mathrm{2}\:\mathrm{sin}\:\alpha=\left(\mathrm{3}−\mathrm{2}\:\mathrm{cos}\:\alpha\right)\mathrm{sin}\:\mathrm{2}\alpha \\ $$$$\mathrm{1}=\left(\mathrm{3}−\mathrm{2}\:\mathrm{cos}\:\alpha\right)\mathrm{cos}\:\alpha \\ $$$$\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{3}\:\mathrm{cos}\:\alpha+\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{2}\:\mathrm{cos}\:\alpha−\mathrm{1}\right)\left(\mathrm{cos}\:\alpha−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\mathrm{1}\:\Rightarrow\alpha=\mathrm{0}°\:\Rightarrow{rejected} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\alpha=\mathrm{60}°\:\checkmark \\ $$
Commented by fantastic2 last updated on 24/Nov/25

$${great}\:{sir} \\ $$